Levi classes generated by nilpotent groups
Algebra i logika, Tome 39 (2000) no. 6, pp. 635-647.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L(\mathcal M)$ be a class of all groups $G$ for which the normal closure $(x)^G$ of every element $x$ belongs to a class $L(\mathcal M)$ is a Levi class generated by $\mathcal M$. $\mathcal N$ and $\mathcal N_0$ be classes of finitely generated nilpotent groups and of torsion-free, finitely generated, nilpotent groups, respectively. We prove that $q\mathcal N_0\subset L(q\mathcal N_0)$ and $q\mathcal N\subset L(q\mathcal N)$, and so $L(q\mathcal N_0)\ne qL(\mathcal N_0)$ and $L(q\mathcal N)\ne qL(\mathcal N)$. It is shown that quasivarieties $L(q\mathcal N)$ and $L(q\mathcal N_0)$ are closed under free products, and that each contains at most one maximal proper subquasivariety. It is also proved that $L(\mathcal M)$ is closed under free products if so is $\mathcal M$.
@article{AL_2000_39_6_a0,
     author = {A. I. Budkin},
     title = {Levi classes generated by nilpotent groups},
     journal = {Algebra i logika},
     pages = {635--647},
     publisher = {mathdoc},
     volume = {39},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_6_a0/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Levi classes generated by nilpotent groups
JO  - Algebra i logika
PY  - 2000
SP  - 635
EP  - 647
VL  - 39
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_6_a0/
LA  - ru
ID  - AL_2000_39_6_a0
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Levi classes generated by nilpotent groups
%J Algebra i logika
%D 2000
%P 635-647
%V 39
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2000_39_6_a0/
%G ru
%F AL_2000_39_6_a0
A. I. Budkin. Levi classes generated by nilpotent groups. Algebra i logika, Tome 39 (2000) no. 6, pp. 635-647. http://geodesic.mathdoc.fr/item/AL_2000_39_6_a0/