On some subgroups of semilinearly ordered groups
Algebra i logika, Tome 39 (2000) no. 4, pp. 465-479.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a semilinearly ordered group with a positive cone $P$. Denote by $\mathbf n(G)$ the greatest convex directed normal subgroup of $G$, by $\mathbf o(G)$ the greatest convex right-ordered subgroup of $G$, and by $\mathbf r(G)$ a set of all elements $x$ of $G$ such that $x$ and $x^{-1}$ are comparable with any element of $P^\pm$ (the collection of all group elements comparable with an identity element). Previously, it was proved that $\mathbf r(G)$ is a convex right-ordered subgroup of $G$, and $\mathbf n(G)\subset\mathbf r(G)\subset\mathbf o(G)$. Here, we establish a new property of $\mathbf r(G)$ and show that the inequalities in the given system of inclusions are, generally, strict.
@article{AL_2000_39_4_a4,
     author = {V. M. Kopytov},
     title = {On some subgroups of semilinearly ordered groups},
     journal = {Algebra i logika},
     pages = {465--479},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_4_a4/}
}
TY  - JOUR
AU  - V. M. Kopytov
TI  - On some subgroups of semilinearly ordered groups
JO  - Algebra i logika
PY  - 2000
SP  - 465
EP  - 479
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_4_a4/
LA  - ru
ID  - AL_2000_39_4_a4
ER  - 
%0 Journal Article
%A V. M. Kopytov
%T On some subgroups of semilinearly ordered groups
%J Algebra i logika
%D 2000
%P 465-479
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2000_39_4_a4/
%G ru
%F AL_2000_39_4_a4
V. M. Kopytov. On some subgroups of semilinearly ordered groups. Algebra i logika, Tome 39 (2000) no. 4, pp. 465-479. http://geodesic.mathdoc.fr/item/AL_2000_39_4_a4/