Autostability of hyperarithmetic models
Algebra i logika, Tome 39 (2000) no. 2, pp. 198-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathscr M$ be a $\Delta^1_1$-constructivizable model. If its Scott rank $\mathrm{sr}({\mathscr M})$ is strictly less than $\omega_1^\mathrm{CK}$, then it can be proved that it is autostable. If $\mathrm{sr}({\mathscr M})=\omega_1^\mathrm{CK}$, then there exists an ordinal $\alpha\omega_1^\mathrm{CK}$ such that for all $\gamma>\alpha$, $\mathscr M$ is not autostable in any degree $0^{(\gamma+1)}$. In addition, we consider problems of the $\Delta^1_1$-autostability of $\Delta_1^1$-constructivizable Boolean algebras.
@article{AL_2000_39_2_a5,
     author = {A. V. Romina},
     title = {Autostability of hyperarithmetic models},
     journal = {Algebra i logika},
     pages = {198--205},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_2_a5/}
}
TY  - JOUR
AU  - A. V. Romina
TI  - Autostability of hyperarithmetic models
JO  - Algebra i logika
PY  - 2000
SP  - 198
EP  - 205
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_2_a5/
LA  - ru
ID  - AL_2000_39_2_a5
ER  - 
%0 Journal Article
%A A. V. Romina
%T Autostability of hyperarithmetic models
%J Algebra i logika
%D 2000
%P 198-205
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2000_39_2_a5/
%G ru
%F AL_2000_39_2_a5
A. V. Romina. Autostability of hyperarithmetic models. Algebra i logika, Tome 39 (2000) no. 2, pp. 198-205. http://geodesic.mathdoc.fr/item/AL_2000_39_2_a5/