Autostability of hyperarithmetic models
Algebra i logika, Tome 39 (2000) no. 2, pp. 198-205
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathscr M$ be a $\Delta^1_1$-constructivizable model. If its Scott rank $\mathrm{sr}({\mathscr M})$ is strictly less than $\omega_1^\mathrm{CK}$, then it can be proved that it is autostable. If $\mathrm{sr}({\mathscr M})=\omega_1^\mathrm{CK}$, then there exists an ordinal $\alpha<\omega_1^\mathrm{CK}$ such that for all $\gamma>\alpha$, $\mathscr M$ is not autostable in any degree $0^{(\gamma+1)}$. In addition, we consider problems of the $\Delta^1_1$-autostability of $\Delta_1^1$-constructivizable Boolean algebras.
@article{AL_2000_39_2_a5,
author = {A. V. Romina},
title = {Autostability of hyperarithmetic models},
journal = {Algebra i logika},
pages = {198--205},
year = {2000},
volume = {39},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2000_39_2_a5/}
}
A. V. Romina. Autostability of hyperarithmetic models. Algebra i logika, Tome 39 (2000) no. 2, pp. 198-205. http://geodesic.mathdoc.fr/item/AL_2000_39_2_a5/