On infinite groups with abelian centralizers of involution
Algebra i logika, Tome 39 (2000) no. 1, pp. 74-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain two characterizations of the projective linear group $\mathrm{PGL}_2(P)$ over a locally finite field $P$ of characteristic 2. The first is defined in terms of permutation groups; the second, in terms of the structure of the centralizers of involution. We use one of the characterizations to prove the existence of infinite groups recognizable by the set of their element orders.
@article{AL_2000_39_1_a5,
     author = {V. D. Mazurov},
     title = {On infinite groups with abelian centralizers of involution},
     journal = {Algebra i logika},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_1_a5/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - On infinite groups with abelian centralizers of involution
JO  - Algebra i logika
PY  - 2000
SP  - 74
EP  - 86
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_1_a5/
LA  - ru
ID  - AL_2000_39_1_a5
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T On infinite groups with abelian centralizers of involution
%J Algebra i logika
%D 2000
%P 74-86
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2000_39_1_a5/
%G ru
%F AL_2000_39_1_a5
V. D. Mazurov. On infinite groups with abelian centralizers of involution. Algebra i logika, Tome 39 (2000) no. 1, pp. 74-86. http://geodesic.mathdoc.fr/item/AL_2000_39_1_a5/