The variety generated of the finite group
Algebra i logika, Tome 6 (1967) no. 3, pp. 9-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to give the simple proof of the following theorem (if [I]): the product $\mathfrak{N}\mathfrak{M}$ of the non-trivial varieties $\mathfrak{N}$ and $\mathfrak{M}$ is generated by the finite group if and only if a) $\mathfrak{N}$ and $\mathfrak{M}$ has non zero coprime exponents and b) $\mathfrak{N}$ consists of the nilpotent groups and $\mathfrak{M}$ consists of the abelian groups. References 1. A. L. Šmelkin, The wreath products and the group varieties, Isvestia Akademee Nauk USSR, ser.math., 29,N I (1965), 149–170.
@article{AL_1967_6_3_a1,
     author = {Yu. M. Gor\v{c}akov},
     title = {The variety generated of the finite group},
     journal = {Algebra i logika},
     pages = {9--11},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_3_a1/}
}
TY  - JOUR
AU  - Yu. M. Gorčakov
TI  - The variety generated of the finite group
JO  - Algebra i logika
PY  - 1967
SP  - 9
EP  - 11
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_3_a1/
LA  - ru
ID  - AL_1967_6_3_a1
ER  - 
%0 Journal Article
%A Yu. M. Gorčakov
%T The variety generated of the finite group
%J Algebra i logika
%D 1967
%P 9-11
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_3_a1/
%G ru
%F AL_1967_6_3_a1
Yu. M. Gorčakov. The variety generated of the finite group. Algebra i logika, Tome 6 (1967) no. 3, pp. 9-11. http://geodesic.mathdoc.fr/item/AL_1967_6_3_a1/