The variety generated of the finite group
Algebra i logika, Tome 6 (1967) no. 3, pp. 9-11
Voir la notice de l'article provenant de la source Math-Net.Ru
The purpose of this paper is to give the simple proof of the following theorem (if [I]): the product $\mathfrak{N}\mathfrak{M}$ of the non-trivial varieties $\mathfrak{N}$ and $\mathfrak{M}$ is generated by the finite group if and only if a) $\mathfrak{N}$ and $\mathfrak{M}$ has non zero coprime exponents and b) $\mathfrak{N}$ consists of the nilpotent groups and $\mathfrak{M}$ consists of the abelian groups. References 1. A. L. Šmelkin, The wreath products and the group varieties, Isvestia Akademee Nauk USSR, ser.math., 29,N I (1965), 149–170.
@article{AL_1967_6_3_a1,
author = {Yu. M. Gor\v{c}akov},
title = {The variety generated of the finite group},
journal = {Algebra i logika},
pages = {9--11},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_1967_6_3_a1/}
}
Yu. M. Gorčakov. The variety generated of the finite group. Algebra i logika, Tome 6 (1967) no. 3, pp. 9-11. http://geodesic.mathdoc.fr/item/AL_1967_6_3_a1/