Аn example of the $G$-periodic torsion free group
Algebra i logika, Tome 6 (1967) no. 3, pp. 5-7
A group $G$ is called $G$-periodic if for any element $g$ of $G$ there exist the elements $h_1, h_2, \dots, h_k$ such that $$ (h_1^{-1}gh_1)(h_2^{-1}gh_2)\dots(h_k^{-1}gh_k)=1. $$ In this note an example of $G$-periodic torsion free group is constructed.
@article{AL_1967_6_3_a0,
author = {Yu. M. Gor\v{c}akov},
title = {{\CYRA}n example of the $G$-periodic torsion free group},
journal = {Algebra i logika},
pages = {5--7},
year = {1967},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_1967_6_3_a0/}
}
Yu. M. Gorčakov. Аn example of the $G$-periodic torsion free group. Algebra i logika, Tome 6 (1967) no. 3, pp. 5-7. http://geodesic.mathdoc.fr/item/AL_1967_6_3_a0/