Аn example of the $G$-periodic torsion free group
Algebra i logika, Tome 6 (1967) no. 3, pp. 5-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is called $G$-periodic if for any element $g$ of $G$ there exist the elements $h_1, h_2, \dots, h_k$ such that $$ (h_1^{-1}gh_1)(h_2^{-1}gh_2)\dots(h_k^{-1}gh_k)=1. $$ In this note an example of $G$-periodic torsion free group is constructed.
@article{AL_1967_6_3_a0,
     author = {Yu. M. Gor\v{c}akov},
     title = {{\CYRA}n example of the $G$-periodic torsion free group},
     journal = {Algebra i logika},
     pages = {5--7},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_3_a0/}
}
TY  - JOUR
AU  - Yu. M. Gorčakov
TI  - Аn example of the $G$-periodic torsion free group
JO  - Algebra i logika
PY  - 1967
SP  - 5
EP  - 7
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_3_a0/
LA  - ru
ID  - AL_1967_6_3_a0
ER  - 
%0 Journal Article
%A Yu. M. Gorčakov
%T Аn example of the $G$-periodic torsion free group
%J Algebra i logika
%D 1967
%P 5-7
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_3_a0/
%G ru
%F AL_1967_6_3_a0
Yu. M. Gorčakov. Аn example of the $G$-periodic torsion free group. Algebra i logika, Tome 6 (1967) no. 3, pp. 5-7. http://geodesic.mathdoc.fr/item/AL_1967_6_3_a0/