От divisible nilpotent groups
Algebra i logika, Tome 6 (1967) no. 2, pp. 111-114
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\pi$ be some set of primes, and let $G$ be the $\pi$-divisible $\pi$-torsion-free locally nilpotent group. For a system of equations over $G$ \begin{eqnarray*} f_1(x_1,\dots, x_n; a_1,\dots,a_m)=1,\\ ..............................\\ f_n(x_1,\dots, x_n; a_1,\dots,a_m)=1, \end{eqnarray*} let $\ell_{ij}$ be the sum of exponents of $x_j$ in the word $f_i$ (for all inclusions $x_j$ in $f_i$). If det $(\ell_{ij})$ is $\pi$-number, then this system has in $G$ the unique solution.
@article{AL_1967_6_2_a9,
author = {A. L. \v{S}hmel'kin},
title = {{\CYRO}{\cyrt} divisible nilpotent groups},
journal = {Algebra i logika},
pages = {111--114},
year = {1967},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_1967_6_2_a9/}
}
A. L. Šhmel'kin. От divisible nilpotent groups. Algebra i logika, Tome 6 (1967) no. 2, pp. 111-114. http://geodesic.mathdoc.fr/item/AL_1967_6_2_a9/