От divisible nilpotent groups
Algebra i logika, Tome 6 (1967) no. 2, pp. 111-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be some set of primes, and let $G$ be the $\pi$-divisible $\pi$-torsion-free locally nilpotent group. For a system of equations over $G$ \begin{eqnarray*} f_1(x_1,\dots, x_n; a_1,\dots,a_m)=1,\\ ..............................\\ f_n(x_1,\dots, x_n; a_1,\dots,a_m)=1, \end{eqnarray*} let $\ell_{ij}$ be the sum of exponents of $x_j$ in the word $f_i$ (for all inclusions $x_j$ in $f_i$). If det $(\ell_{ij})$ is $\pi$-number, then this system has in $G$ the unique solution.
@article{AL_1967_6_2_a9,
     author = {A. L. \v{S}hmel'kin},
     title = {{\CYRO}{\cyrt} divisible nilpotent groups},
     journal = {Algebra i logika},
     pages = {111--114},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_2_a9/}
}
TY  - JOUR
AU  - A. L. Šhmel'kin
TI  - От divisible nilpotent groups
JO  - Algebra i logika
PY  - 1967
SP  - 111
EP  - 114
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_2_a9/
LA  - ru
ID  - AL_1967_6_2_a9
ER  - 
%0 Journal Article
%A A. L. Šhmel'kin
%T От divisible nilpotent groups
%J Algebra i logika
%D 1967
%P 111-114
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_2_a9/
%G ru
%F AL_1967_6_2_a9
A. L. Šhmel'kin. От divisible nilpotent groups. Algebra i logika, Tome 6 (1967) no. 2, pp. 111-114. http://geodesic.mathdoc.fr/item/AL_1967_6_2_a9/