Two notes on free soluble groups
Algebra i logika, Tome 6 (1967) no. 2, pp. 95-109
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be the free soluble group of length $k>0$ ($G^{(k)}=1$), and let $\varphi$ be an automorphism of $G$. If $x\varphi=x$ for all $x\in G^{(k-1)}$, then $\varphi$ is the inner automorphism induced by an element $y\in G^{(k-1)}$. We study also a question: is it true that in the free soluble group $G$ $\{y\}^G=\{h\}^G$ if and only if $y^{\pm1}=c^{-1}hc$? (Fоr absolutely free group this is a theorem of W. Magnus). In particular cases But this is not true in general; two elements $g, h$ of the free metabelian group $G$ of the rank $2$ are constructed in the paper, such that $\{g\}^G=\{h\}^G$ and $g^{\pm1}, h$ are not conjugated.
@article{AL_1967_6_2_a8,
author = {A. L. \v{S}hmelkin},
title = {Two notes on free soluble groups},
journal = {Algebra i logika},
pages = {95--109},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_1967_6_2_a8/}
}
A. L. Šhmelkin. Two notes on free soluble groups. Algebra i logika, Tome 6 (1967) no. 2, pp. 95-109. http://geodesic.mathdoc.fr/item/AL_1967_6_2_a8/