Some remarks on simple alternative rings
Algebra i logika, Tome 6 (1967) no. 2, pp. 21-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

I. If $\mathcal{O}$ is a simple, commutative alternative ring then $\mathcal{O}$ is a field. II. Let $\mathcal{O}$ be a simple alternative ring of characteristic not $2,3$, then a) Jordan ring $\mathcal{O}^{(+)}$ is a simple ring. b ) If $J$ is an ideal of Malcev ring $\mathcal{O}^{(-)}$ then either $J$ contains $[\mathcal{O},\mathcal{O}]$ or $J$ is contained in center $Z$ of $\mathcal{O}^{(-)}$. In particular, if $\mathcal{O}^{(-)}$ is not Lie ring then $\mathcal{O}^{(-)}/Z$ a simple Malcev ring.
@article{AL_1967_6_2_a2,
     author = {K. A. \v{Z}hevlakov},
     title = {Some remarks on simple alternative rings},
     journal = {Algebra i logika},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_2_a2/}
}
TY  - JOUR
AU  - K. A. Žhevlakov
TI  - Some remarks on simple alternative rings
JO  - Algebra i logika
PY  - 1967
SP  - 21
EP  - 33
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_2_a2/
LA  - ru
ID  - AL_1967_6_2_a2
ER  - 
%0 Journal Article
%A K. A. Žhevlakov
%T Some remarks on simple alternative rings
%J Algebra i logika
%D 1967
%P 21-33
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_2_a2/
%G ru
%F AL_1967_6_2_a2
K. A. Žhevlakov. Some remarks on simple alternative rings. Algebra i logika, Tome 6 (1967) no. 2, pp. 21-33. http://geodesic.mathdoc.fr/item/AL_1967_6_2_a2/