Some remarks on simple alternative rings
Algebra i logika, Tome 6 (1967) no. 2, pp. 21-33
Voir la notice de l'article provenant de la source Math-Net.Ru
I. If $\mathcal{O}$ is a simple, commutative alternative ring then $\mathcal{O}$ is a field. II. Let $\mathcal{O}$ be a simple alternative ring of characteristic not $2,3$, then a) Jordan ring $\mathcal{O}^{(+)}$ is a simple ring. b ) If $J$ is an ideal of Malcev ring $\mathcal{O}^{(-)}$ then either $J$ contains $[\mathcal{O},\mathcal{O}]$ or $J$ is contained in center $Z$ of $\mathcal{O}^{(-)}$. In particular, if $\mathcal{O}^{(-)}$ is not Lie ring then $\mathcal{O}^{(-)}/Z$ a simple Malcev ring.
@article{AL_1967_6_2_a2,
author = {K. A. \v{Z}hevlakov},
title = {Some remarks on simple alternative rings},
journal = {Algebra i logika},
pages = {21--33},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_1967_6_2_a2/}
}
K. A. Žhevlakov. Some remarks on simple alternative rings. Algebra i logika, Tome 6 (1967) no. 2, pp. 21-33. http://geodesic.mathdoc.fr/item/AL_1967_6_2_a2/