The perfect matching association scheme
Algebraic Combinatorics, Tome 3 (2020) no. 3, pp. 559-591
Voir la notice de l'article provenant de la source Numdam
We revisit the Bose–Mesner algebra of the perfect matching association scheme. Our main results are
- An inductive algorithm, based on solving linear equations, to compute the eigenvalues of the orbital basis elements given the central characters of the symmetric groups.
- Universal formulas, as content evaluations of symmetric functions, for the eigenvalues of fixed orbitals.
- An inductive construction of an eigenvector (the so called first Gelfand–Tsetlin vector) in each eigenspace leading to a different inductive algorithm (not using central characters) for the eigenvalues of the orbital basis elements.
Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.104
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.104
Classification :
05E10, 05E05, 05E30
Keywords: perfect matching association scheme, content evaluation of symmetric functions, Gelfand–Tsetlin vectors.
Keywords: perfect matching association scheme, content evaluation of symmetric functions, Gelfand–Tsetlin vectors.
Affiliations des auteurs :
Srinivasan, Murali K. 1
Licence :
CC-BY 4.0
CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2020__3_3_559_0,
author = {Srinivasan, Murali K.},
title = {The perfect matching association scheme},
journal = {Algebraic Combinatorics},
pages = {559--591},
publisher = {MathOA foundation},
volume = {3},
number = {3},
year = {2020},
doi = {10.5802/alco.104},
zbl = {1441.05240},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.104/}
}
Srinivasan, Murali K. The perfect matching association scheme. Algebraic Combinatorics, Tome 3 (2020) no. 3, pp. 559-591. doi: 10.5802/alco.104
Cité par Sources :