Voir la notice de l'article provenant de la source Numdam
Let be the maximum order of a connected bipartite -regular graph whose second largest eigenvalue is at most . In this paper, we obtain a general upper bound for for any . Our bound gives the exact value of whenever there exists a bipartite distance-regular graph of degree , second largest eigenvalue , diameter and girth such that . For certain values of , there are infinitely many such graphs of various valencies . However, for or , we prove that there are no bipartite distance-regular graphs with .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.71
Keywords: second eigenvalue, bipartite regular graph, bipartite distance-regular graph, expander, linear programming bound.
Cioabă, Sebastian M. 1 ; Koolen, Jack H. 2 ; Nozaki, Hiroshi 3

@article{ALCO_2019__2_6_1219_0, author = {Cioab\u{a}, Sebastian M. and Koolen, Jack H. and Nozaki, Hiroshi}, title = {A spectral version of the {Moore} problem for bipartite regular graphs}, journal = {Algebraic Combinatorics}, pages = {1219--1238}, publisher = {MathOA foundation}, volume = {2}, number = {6}, year = {2019}, doi = {10.5802/alco.71}, mrnumber = {4049844}, zbl = {1428.05187}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.71/} }
TY - JOUR AU - Cioabă, Sebastian M. AU - Koolen, Jack H. AU - Nozaki, Hiroshi TI - A spectral version of the Moore problem for bipartite regular graphs JO - Algebraic Combinatorics PY - 2019 SP - 1219 EP - 1238 VL - 2 IS - 6 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.71/ DO - 10.5802/alco.71 LA - en ID - ALCO_2019__2_6_1219_0 ER -
%0 Journal Article %A Cioabă, Sebastian M. %A Koolen, Jack H. %A Nozaki, Hiroshi %T A spectral version of the Moore problem for bipartite regular graphs %J Algebraic Combinatorics %D 2019 %P 1219-1238 %V 2 %N 6 %I MathOA foundation %U http://geodesic.mathdoc.fr/articles/10.5802/alco.71/ %R 10.5802/alco.71 %G en %F ALCO_2019__2_6_1219_0
Cioabă, Sebastian M.; Koolen, Jack H.; Nozaki, Hiroshi. A spectral version of the Moore problem for bipartite regular graphs. Algebraic Combinatorics, Tome 2 (2019) no. 6, pp. 1219-1238. doi: 10.5802/alco.71
Cité par Sources :