Minimal inclusions of torsion classes
Algebraic Combinatorics, Tome 2 (2019) no. 5, pp. 879-901

Voir la notice de l'article provenant de la source Numdam

Let Λ be a finite-dimensional associative algebra. The torsion classes of modΛ form a lattice under containment, denoted by torsΛ. In this paper, we characterize the cover relations in torsΛ by certain indecomposable modules. We consider three applications: First, we show that the completely join-irreducible torsion classes (torsion classes which cover precisely one element) are in bijection with bricks. Second, we characterize faces of the canonical join complex of torsΛ in terms of representation theory. Finally, we show that, in general, the algebra Λ is not characterized by its lattice torsΛ. In particular, we study the torsion theory of a quotient of the preprojective algebra of type A n . We show that its torsion class lattice is isomorphic to the weak order on A n .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.72
Classification : 05E10, 06B15
Keywords: lattice theory, torsion classes, canonical join representations

Barnard, Emily 1 ; Carroll, Andrew 2 ; Zhu, Shijie 3

1 Department of Mathematical Sciences DePaul University 2320 N. Kenmore Ave. Suite 502 Chicago IL 60614, USA
2 3778 Keating St. San Diego CA 92110, USA
3 Mathematics Department University of Iowa 14 MacLean Hall Iowa City IA 52242, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2019__2_5_879_0,
     author = {Barnard, Emily and Carroll, Andrew and Zhu, Shijie},
     title = {Minimal inclusions of torsion classes},
     journal = {Algebraic Combinatorics},
     pages = {879--901},
     publisher = {MathOA foundation},
     volume = {2},
     number = {5},
     year = {2019},
     doi = {10.5802/alco.72},
     mrnumber = {4023570},
     zbl = {1428.05314},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.72/}
}
TY  - JOUR
AU  - Barnard, Emily
AU  - Carroll, Andrew
AU  - Zhu, Shijie
TI  - Minimal inclusions of torsion classes
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 879
EP  - 901
VL  - 2
IS  - 5
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.72/
DO  - 10.5802/alco.72
LA  - en
ID  - ALCO_2019__2_5_879_0
ER  - 
%0 Journal Article
%A Barnard, Emily
%A Carroll, Andrew
%A Zhu, Shijie
%T Minimal inclusions of torsion classes
%J Algebraic Combinatorics
%D 2019
%P 879-901
%V 2
%N 5
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.72/
%R 10.5802/alco.72
%G en
%F ALCO_2019__2_5_879_0
Barnard, Emily; Carroll, Andrew; Zhu, Shijie. Minimal inclusions of torsion classes. Algebraic Combinatorics, Tome 2 (2019) no. 5, pp. 879-901. doi: 10.5802/alco.72

Cité par Sources :