Higher nerves of simplicial complexes
Algebraic Combinatorics, Tome 2 (2019) no. 5, pp. 803-813

Voir la notice de l'article provenant de la source Numdam

We investigate generalized notions of the nerve complex for the facets of a simplicial complex. We show that the homologies of these higher nerve complexes determine the depth of the Stanley-Reisner ring k[Δ] as well as the f-vector and h-vector of Δ. We present, as an application, a formula for computing regularity of monomial ideals.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.64
Classification : 05E40, 05E45, 13C15, 13D03
Keywords: Nerve Complex, depth, $k$-connectivity, homologies, poset, monomial ideals

Dao, Hailong 1 ; Doolittle, Joseph 1 ; Duna, Ken 1 ; Goeckner, Bennet 2 ; Holmes, Brent 1 ; Lyle, Justin 1

1 University of Kansas Department of Mathematics 1460 Jayhawk Blvd Lawrence KS 66045, USA
2 Department of Mathematics University of Washington Seattle, WA 98195-4350, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2019__2_5_803_0,
     author = {Dao, Hailong and Doolittle, Joseph and Duna, Ken and Goeckner, Bennet and Holmes, Brent and Lyle, Justin},
     title = {Higher nerves of simplicial complexes},
     journal = {Algebraic Combinatorics},
     pages = {803--813},
     publisher = {MathOA foundation},
     volume = {2},
     number = {5},
     year = {2019},
     doi = {10.5802/alco.64},
     mrnumber = {4023567},
     zbl = {1421.05099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.64/}
}
TY  - JOUR
AU  - Dao, Hailong
AU  - Doolittle, Joseph
AU  - Duna, Ken
AU  - Goeckner, Bennet
AU  - Holmes, Brent
AU  - Lyle, Justin
TI  - Higher nerves of simplicial complexes
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 803
EP  - 813
VL  - 2
IS  - 5
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.64/
DO  - 10.5802/alco.64
LA  - en
ID  - ALCO_2019__2_5_803_0
ER  - 
%0 Journal Article
%A Dao, Hailong
%A Doolittle, Joseph
%A Duna, Ken
%A Goeckner, Bennet
%A Holmes, Brent
%A Lyle, Justin
%T Higher nerves of simplicial complexes
%J Algebraic Combinatorics
%D 2019
%P 803-813
%V 2
%N 5
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.64/
%R 10.5802/alco.64
%G en
%F ALCO_2019__2_5_803_0
Dao, Hailong; Doolittle, Joseph; Duna, Ken; Goeckner, Bennet; Holmes, Brent; Lyle, Justin. Higher nerves of simplicial complexes. Algebraic Combinatorics, Tome 2 (2019) no. 5, pp. 803-813. doi: 10.5802/alco.64

Cité par Sources :