Voir la notice de l'article provenant de la source Numdam
We introduce a new model for the realization space of a matroid, which is obtained from a variety defined by a saturated determinantal ideal, called the slack ideal, coming from the vertex-hyperplane incidence matrix of the matroid. This is inspired by a similar model for the slack realization space of a polytope. We show how to use these ideas to certify non-realizability of matroids, and describe an explicit relationship to the standard Grassmann–Plücker realization space model. We also exhibit a way of detecting projectively unique matroids via their slack ideals by introducing a toric ideal that can be associated to any matroid.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.68
Keywords: matroid, realization space
Brandt, Madeline 1 ; Wiebe, Amy 2
CC-BY 4.0
@article{ALCO_2019__2_4_663_0,
author = {Brandt, Madeline and Wiebe, Amy},
title = {The slack realization space of a matroid},
journal = {Algebraic Combinatorics},
pages = {663--681},
publisher = {MathOA foundation},
volume = {2},
number = {4},
year = {2019},
doi = {10.5802/alco.68},
mrnumber = {3997517},
zbl = {1420.52017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.68/}
}
TY - JOUR AU - Brandt, Madeline AU - Wiebe, Amy TI - The slack realization space of a matroid JO - Algebraic Combinatorics PY - 2019 SP - 663 EP - 681 VL - 2 IS - 4 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.68/ DO - 10.5802/alco.68 LA - en ID - ALCO_2019__2_4_663_0 ER -
Brandt, Madeline; Wiebe, Amy. The slack realization space of a matroid. Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 663-681. doi: 10.5802/alco.68
Cité par Sources :