Representation stability on the cohomology of complements of subspace arrangements
Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 603-611

Voir la notice de l'article provenant de la source Numdam

We study representation stability in the sense of Church and Farb of sequences of cohomology groups of complements of arrangements of linear subspaces in real and complex space as S n -modules. We consider arrangements of linear subspaces defined by sets of diagonal equalities x i =x j and invariant under the action of S n which permutes the coordinates. We provide bounds for the point when stabilization occurs and an alternative proof of the fact that stabilization happens. The latter is a special case of very general stabilization results proved independently by Gadish and by Petersen; for the pure braid space the result is part of the work of Church and Farb. For the latter space, better stabilization bounds were obtained by Hersh and Reiner.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.60
Classification : 55-XX, 05E10
Keywords: representation stability, subspace arrangement, symmetric functions

Rapp, Artur 1

1 Philipps-Universität Marburg Fachbereich Mathematik und Informatik Hans-Meerweinstr. 6 35032 Marburg, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2019__2_4_603_0,
     author = {Rapp, Artur},
     title = {Representation stability on the cohomology of complements of subspace arrangements},
     journal = {Algebraic Combinatorics},
     pages = {603--611},
     publisher = {MathOA foundation},
     volume = {2},
     number = {4},
     year = {2019},
     doi = {10.5802/alco.60},
     mrnumber = {3997513},
     zbl = {1427.55012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.60/}
}
TY  - JOUR
AU  - Rapp, Artur
TI  - Representation stability on the cohomology of complements of subspace arrangements
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 603
EP  - 611
VL  - 2
IS  - 4
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.60/
DO  - 10.5802/alco.60
LA  - en
ID  - ALCO_2019__2_4_603_0
ER  - 
%0 Journal Article
%A Rapp, Artur
%T Representation stability on the cohomology of complements of subspace arrangements
%J Algebraic Combinatorics
%D 2019
%P 603-611
%V 2
%N 4
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.60/
%R 10.5802/alco.60
%G en
%F ALCO_2019__2_4_603_0
Rapp, Artur. Representation stability on the cohomology of complements of subspace arrangements. Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 603-611. doi: 10.5802/alco.60

Cité par Sources :