Canonical decomposition of a difference of convex sets
Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 585-602
Voir la notice de l'article provenant de la source Numdam
Let be a lattice of rank and let be its dual lattice. In this article we show that given two closed, bounded, full-dimensional convex sets , there is a canonical convex decomposition of the difference and we interpret the volume of the pieces geometrically in terms of intersection numbers of toric -divisors.
Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.55
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.55
Classification :
52A22, 14M25, 14C17
Keywords: convex geometry, toric geometry, intersection theory
Keywords: convex geometry, toric geometry, intersection theory
Affiliations des auteurs :
Botero, Ana M. 1
Licence :
CC-BY 4.0
CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2019__2_4_585_0,
author = {Botero, Ana M.},
title = {Canonical decomposition of a difference of convex sets},
journal = {Algebraic Combinatorics},
pages = {585--602},
publisher = {MathOA foundation},
volume = {2},
number = {4},
year = {2019},
doi = {10.5802/alco.55},
mrnumber = {3997512},
zbl = {1420.52005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.55/}
}
TY - JOUR AU - Botero, Ana M. TI - Canonical decomposition of a difference of convex sets JO - Algebraic Combinatorics PY - 2019 SP - 585 EP - 602 VL - 2 IS - 4 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.55/ DO - 10.5802/alco.55 LA - en ID - ALCO_2019__2_4_585_0 ER -
Botero, Ana M. Canonical decomposition of a difference of convex sets. Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 585-602. doi: 10.5802/alco.55
Cité par Sources :