Canonical decomposition of a difference of convex sets
Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 585-602

Voir la notice de l'article provenant de la source Numdam

Let N be a lattice of rank n and let M=N be its dual lattice. In this article we show that given two closed, bounded, full-dimensional convex sets K 1 K 2 M :=M , there is a canonical convex decomposition of the difference K 2 int(K 1 ) and we interpret the volume of the pieces geometrically in terms of intersection numbers of toric b-divisors.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.55
Classification : 52A22, 14M25, 14C17
Keywords: convex geometry, toric geometry, intersection theory

Botero, Ana M. 1

1 University of Regensburg Dept. of mathematics Universitätsstr. 31 93053 Regensburg, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2019__2_4_585_0,
     author = {Botero, Ana M.},
     title = {Canonical decomposition of a difference of convex sets},
     journal = {Algebraic Combinatorics},
     pages = {585--602},
     publisher = {MathOA foundation},
     volume = {2},
     number = {4},
     year = {2019},
     doi = {10.5802/alco.55},
     mrnumber = {3997512},
     zbl = {1420.52005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.55/}
}
TY  - JOUR
AU  - Botero, Ana M.
TI  - Canonical decomposition of a difference of convex sets
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 585
EP  - 602
VL  - 2
IS  - 4
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.55/
DO  - 10.5802/alco.55
LA  - en
ID  - ALCO_2019__2_4_585_0
ER  - 
%0 Journal Article
%A Botero, Ana M.
%T Canonical decomposition of a difference of convex sets
%J Algebraic Combinatorics
%D 2019
%P 585-602
%V 2
%N 4
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.55/
%R 10.5802/alco.55
%G en
%F ALCO_2019__2_4_585_0
Botero, Ana M. Canonical decomposition of a difference of convex sets. Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 585-602. doi: 10.5802/alco.55

Cité par Sources :