A bijective proof of Macdonald’s reduced word formula
Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 217-248

Voir la notice de l'article provenant de la source Numdam

We give a bijective proof of Macdonald’s reduced word identity using pipe dreams and Little’s bumping algorithm. This proof extends to a principal specialization due to Fomin and Stanley. Such a proof has been sought for over 20 years. Our bijective tools also allow us to solve a problem posed by Fomin and Kirillov from 1997 using work of Wachs, Lenart, Serrano and Stump. These results extend earlier work by the third author on a Markov process for reduced words of the longest permutation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/alco.23

Billey, Sara C. 1 ; Holroyd, Alexander E. 2 ; Young, Benjamin J. 3

1 Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195, USA
2 Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA
3 Department of Mathematics, 1222 University of Oregon, Eugene, OR 97403, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2019__2_2_217_0,
     author = {Billey, Sara C. and Holroyd, Alexander E. and Young, Benjamin J.},
     title = {A bijective proof of {Macdonald{\textquoteright}s} reduced word formula},
     journal = {Algebraic Combinatorics},
     pages = {217--248},
     publisher = {MathOA foundation},
     volume = {2},
     number = {2},
     year = {2019},
     doi = {10.5802/alco.23},
     mrnumber = {3934829},
     zbl = {1409.05024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.23/}
}
TY  - JOUR
AU  - Billey, Sara C.
AU  - Holroyd, Alexander E.
AU  - Young, Benjamin J.
TI  - A bijective proof of Macdonald’s reduced word formula
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 217
EP  - 248
VL  - 2
IS  - 2
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.23/
DO  - 10.5802/alco.23
LA  - en
ID  - ALCO_2019__2_2_217_0
ER  - 
%0 Journal Article
%A Billey, Sara C.
%A Holroyd, Alexander E.
%A Young, Benjamin J.
%T A bijective proof of Macdonald’s reduced word formula
%J Algebraic Combinatorics
%D 2019
%P 217-248
%V 2
%N 2
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.23/
%R 10.5802/alco.23
%G en
%F ALCO_2019__2_2_217_0
Billey, Sara C.; Holroyd, Alexander E.; Young, Benjamin J. A bijective proof of Macdonald’s reduced word formula. Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 217-248. doi: 10.5802/alco.23

Cité par Sources :