Voir la notice de l'article provenant de la source Numdam
We give a bijective proof of Macdonald’s reduced word identity using pipe dreams and Little’s bumping algorithm. This proof extends to a principal specialization due to Fomin and Stanley. Such a proof has been sought for over 20 years. Our bijective tools also allow us to solve a problem posed by Fomin and Kirillov from 1997 using work of Wachs, Lenart, Serrano and Stump. These results extend earlier work by the third author on a Markov process for reduced words of the longest permutation.
Accepté le :
Publié le :
DOI : 10.5802/alco.23
Billey, Sara C. 1 ; Holroyd, Alexander E. 2 ; Young, Benjamin J. 3

@article{ALCO_2019__2_2_217_0, author = {Billey, Sara C. and Holroyd, Alexander E. and Young, Benjamin J.}, title = {A bijective proof of {Macdonald{\textquoteright}s} reduced word formula}, journal = {Algebraic Combinatorics}, pages = {217--248}, publisher = {MathOA foundation}, volume = {2}, number = {2}, year = {2019}, doi = {10.5802/alco.23}, mrnumber = {3934829}, zbl = {1409.05024}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.23/} }
TY - JOUR AU - Billey, Sara C. AU - Holroyd, Alexander E. AU - Young, Benjamin J. TI - A bijective proof of Macdonald’s reduced word formula JO - Algebraic Combinatorics PY - 2019 SP - 217 EP - 248 VL - 2 IS - 2 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.23/ DO - 10.5802/alco.23 LA - en ID - ALCO_2019__2_2_217_0 ER -
%0 Journal Article %A Billey, Sara C. %A Holroyd, Alexander E. %A Young, Benjamin J. %T A bijective proof of Macdonald’s reduced word formula %J Algebraic Combinatorics %D 2019 %P 217-248 %V 2 %N 2 %I MathOA foundation %U http://geodesic.mathdoc.fr/articles/10.5802/alco.23/ %R 10.5802/alco.23 %G en %F ALCO_2019__2_2_217_0
Billey, Sara C.; Holroyd, Alexander E.; Young, Benjamin J. A bijective proof of Macdonald’s reduced word formula. Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 217-248. doi: 10.5802/alco.23
Cité par Sources :