Semi-steady non-commutative crepant resolutions via regular dimer models
Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 173-195

Voir la notice de l'article provenant de la source Numdam

A consistent dimer model gives a non-commutative crepant resolution (= NCCR) of a 3-dimensional Gorenstein toric singularity. In particular, it is known that a consistent dimer model gives a class of NCCRs called steady if and only if it is homotopy equivalent to a regular hexagonal dimer model. Inspired by this result, we detect another nice property on NCCRs that characterizes square dimer models. We call such NCCRs semi-steady NCCRs, and study their properties.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.39
Classification : 13C14, 05B45, 14E15, 16S38
Keywords: Non-commutative crepant resolutions, Dimer models, Regular tilings, Toric singularities

Nakajima, Yusuke 1

1 Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2019__2_2_173_0,
     author = {Nakajima, Yusuke},
     title = {Semi-steady non-commutative crepant resolutions via regular dimer models},
     journal = {Algebraic Combinatorics},
     pages = {173--195},
     publisher = {MathOA foundation},
     volume = {2},
     number = {2},
     year = {2019},
     doi = {10.5802/alco.39},
     zbl = {1419.13019},
     mrnumber = {3934827},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.39/}
}
TY  - JOUR
AU  - Nakajima, Yusuke
TI  - Semi-steady non-commutative crepant resolutions via regular dimer models
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 173
EP  - 195
VL  - 2
IS  - 2
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.39/
DO  - 10.5802/alco.39
LA  - en
ID  - ALCO_2019__2_2_173_0
ER  - 
%0 Journal Article
%A Nakajima, Yusuke
%T Semi-steady non-commutative crepant resolutions via regular dimer models
%J Algebraic Combinatorics
%D 2019
%P 173-195
%V 2
%N 2
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.39/
%R 10.5802/alco.39
%G en
%F ALCO_2019__2_2_173_0
Nakajima, Yusuke. Semi-steady non-commutative crepant resolutions via regular dimer models. Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 173-195. doi: 10.5802/alco.39

Cité par Sources :