Semi-steady non-commutative crepant resolutions via regular dimer models
Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 173-195
Voir la notice de l'article provenant de la source Numdam
A consistent dimer model gives a non-commutative crepant resolution (= NCCR) of a -dimensional Gorenstein toric singularity. In particular, it is known that a consistent dimer model gives a class of NCCRs called steady if and only if it is homotopy equivalent to a regular hexagonal dimer model. Inspired by this result, we detect another nice property on NCCRs that characterizes square dimer models. We call such NCCRs semi-steady NCCRs, and study their properties.
Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.39
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.39
Classification :
13C14, 05B45, 14E15, 16S38
Keywords: Non-commutative crepant resolutions, Dimer models, Regular tilings, Toric singularities
Keywords: Non-commutative crepant resolutions, Dimer models, Regular tilings, Toric singularities
Affiliations des auteurs :
Nakajima, Yusuke 1
Licence :
CC-BY 4.0
CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2019__2_2_173_0,
author = {Nakajima, Yusuke},
title = {Semi-steady non-commutative crepant resolutions via regular dimer models},
journal = {Algebraic Combinatorics},
pages = {173--195},
publisher = {MathOA foundation},
volume = {2},
number = {2},
year = {2019},
doi = {10.5802/alco.39},
zbl = {1419.13019},
mrnumber = {3934827},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.39/}
}
TY - JOUR AU - Nakajima, Yusuke TI - Semi-steady non-commutative crepant resolutions via regular dimer models JO - Algebraic Combinatorics PY - 2019 SP - 173 EP - 195 VL - 2 IS - 2 PB - MathOA foundation UR - http://geodesic.mathdoc.fr/articles/10.5802/alco.39/ DO - 10.5802/alco.39 LA - en ID - ALCO_2019__2_2_173_0 ER -
Nakajima, Yusuke. Semi-steady non-commutative crepant resolutions via regular dimer models. Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 173-195. doi: 10.5802/alco.39
Cité par Sources :