Voir la notice de l'article provenant de la source Numdam
We study a shift action defined on multipartitions and on residue multisets of their Young diagrams. We prove that the minimal orbit cardinality among all multipartitions associated with a given multiset depends only on the orbit cardinality of the multiset. Using abaci, this problem reduces to a convex optimisation problem over the integers with linear constraints. We solve it by proving an existence theorem for binary matrices with prescribed row, column and block sums. Finally, we give some applications to the representation theory of the Hecke algebra of the complex reflection group .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.40
Keywords: Ariki–Koike algebras, multipartitions, residues, abacus, Hecke algebras
Rostam, Salim 1
 CC-BY 4.0
                @article{ALCO_2019__2_1_75_0,
     author = {Rostam, Salim},
     title = {Stuttering blocks of {Ariki{\textendash}Koike} algebras},
     journal = {Algebraic Combinatorics},
     pages = {75--118},
     publisher = {MathOA foundation},
     volume = {2},
     number = {1},
     year = {2019},
     doi = {10.5802/alco.40},
     mrnumber = {3912169},
     zbl = {1425.20006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.40/}
}
                      
                      
                    Rostam, Salim. Stuttering blocks of Ariki–Koike algebras. Algebraic Combinatorics, Tome 2 (2019) no. 1, pp. 75-118. doi: 10.5802/alco.40
Cité par Sources :