Dual filtered graphs
Algebraic Combinatorics, Tome 1 (2018) no. 4, pp. 441-500

Voir la notice de l'article provenant de la source Numdam

We define a K-theoretic analogue of Fomin’s dual graded graphs, which we call dual filtered graphs. The key formula in the definition is DU-UD=D+I. Our major examples are K-theoretic analogues of Young’s lattice, of shifted Young’s lattice, and of the Young–Fibonacci lattice. We suggest notions of tableaux, insertion algorithms, and growth rules whenever such objects are not already present in the literature. (See the table below.) We also provide a large number of other examples. Most of our examples arise via two constructions, which we call the Pieri construction and the Möbius construction. The Pieri construction is closely related to the construction of dual graded graphs from a graded Hopf algebra, as described in [, , ]. The Möbius construction is more mysterious but also potentially more important, as it corresponds to natural insertion algorithms.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.21
Classification : 05E99, 05E05
Keywords: dual graded graphs, insertion algorithms, $K$-theory, symmetric functions

Patrias, Rebecca 1 ; Pylyavskyy, Pavlo 2

1 Laboratoire de Combinatoire et d’Informatique Mathématique Université du Québec à Montréal 201 Président-Kennedy Montréal, Québec H2X 3Y7, Canada
2 Department of Mathematics University of Minnesota 127 Vincent Hall 206 Church Street Minneapolis, MN 5545, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{ALCO_2018__1_4_441_0,
     author = {Patrias, Rebecca and Pylyavskyy, Pavlo},
     title = {Dual filtered graphs},
     journal = {Algebraic Combinatorics},
     pages = {441--500},
     publisher = {MathOA foundation},
     volume = {1},
     number = {4},
     year = {2018},
     doi = {10.5802/alco.21},
     mrnumber = {3875073},
     zbl = {1397.05202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/alco.21/}
}
TY  - JOUR
AU  - Patrias, Rebecca
AU  - Pylyavskyy, Pavlo
TI  - Dual filtered graphs
JO  - Algebraic Combinatorics
PY  - 2018
SP  - 441
EP  - 500
VL  - 1
IS  - 4
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/alco.21/
DO  - 10.5802/alco.21
LA  - en
ID  - ALCO_2018__1_4_441_0
ER  - 
%0 Journal Article
%A Patrias, Rebecca
%A Pylyavskyy, Pavlo
%T Dual filtered graphs
%J Algebraic Combinatorics
%D 2018
%P 441-500
%V 1
%N 4
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/alco.21/
%R 10.5802/alco.21
%G en
%F ALCO_2018__1_4_441_0
Patrias, Rebecca; Pylyavskyy, Pavlo. Dual filtered graphs. Algebraic Combinatorics, Tome 1 (2018) no. 4, pp. 441-500. doi: 10.5802/alco.21

Cité par Sources :