Uniqueness of the infinite noodle
Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 2, pp. 221-238
Voir la notice de l'article provenant de la source Numdam
Consider the graph obtained by superposition of an independent pair of uniform infinite non-crossing perfect matchings of the set of integers. We prove that this graph contains at most one infinite path. Several motivations are discussed.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/70
Publié le :
DOI : 10.4171/aihpd/70
Classification :
60-XX, 05-XX
Keywords: Infinite cluster, random matching
Keywords: Infinite cluster, random matching
@article{AIHPD_2019__6_2_221_0,
author = {Curien, Nicolas and Kozma, Gady and Sidoravicius, Vladas and Tournier, Laurent},
title = {Uniqueness of the infinite noodle},
journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
pages = {221--238},
volume = {6},
number = {2},
year = {2019},
doi = {10.4171/aihpd/70},
mrnumber = {3950654},
zbl = {1478.60256},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/70/}
}
TY - JOUR AU - Curien, Nicolas AU - Kozma, Gady AU - Sidoravicius, Vladas AU - Tournier, Laurent TI - Uniqueness of the infinite noodle JO - Annales de l’Institut Henri Poincaré D PY - 2019 SP - 221 EP - 238 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/70/ DO - 10.4171/aihpd/70 LA - en ID - AIHPD_2019__6_2_221_0 ER -
%0 Journal Article %A Curien, Nicolas %A Kozma, Gady %A Sidoravicius, Vladas %A Tournier, Laurent %T Uniqueness of the infinite noodle %J Annales de l’Institut Henri Poincaré D %D 2019 %P 221-238 %V 6 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/70/ %R 10.4171/aihpd/70 %G en %F AIHPD_2019__6_2_221_0
Curien, Nicolas; Kozma, Gady; Sidoravicius, Vladas; Tournier, Laurent. Uniqueness of the infinite noodle. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 2, pp. 221-238. doi: 10.4171/aihpd/70
Cité par Sources :