Voir la notice de l'article provenant de la source Numdam
We prove that, for , , and matrices with entries in a non-commutative ring such that
satisfying suitable commutation relations (in particular, is a Manin matrix), row-pseudo-commutative matrix (a Manin matrix), the following identity holds:
Furthermore, if also is a Manin matrix, for ,
Here and , are respectively the bra and the ket of the ground state, and the creation and annihilation operators of a quantum harmonic oscillator, while and are Grassmann variables in a Berezin integral. These results should be seen as a generalization of the classical Cauchy–Binet formula, in which and are null matrices, and of the non-commutative generalization, the Capelli identity, in which and are identity matrices and .
DOI : 10.4171/aihpd/1
Keywords: Invariant Theory, Capelli identity, non-commutative determinant, Lukasiewicz paths, right-quantum matrix, Cartier-Foata matrix, Manin matrix
@article{AIHPD_2014__1_1_1_0,
author = {Caracciolo, Sergio and Sportiello, Andrea},
title = {Noncommutative determinants, {Cauchy{\textendash}Binet} formulae, and {Capelli-type} identities {II.} {Grassmann} and quantum oscillator algebra representation},
journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
pages = {1--46},
volume = {1},
number = {1},
year = {2014},
doi = {10.4171/aihpd/1},
mrnumber = {3166201},
zbl = {1383.15007},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/1/}
}
TY - JOUR AU - Caracciolo, Sergio AU - Sportiello, Andrea TI - Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type identities II. Grassmann and quantum oscillator algebra representation JO - Annales de l’Institut Henri Poincaré D PY - 2014 SP - 1 EP - 46 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/1/ DO - 10.4171/aihpd/1 LA - en ID - AIHPD_2014__1_1_1_0 ER -
%0 Journal Article %A Caracciolo, Sergio %A Sportiello, Andrea %T Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type identities II. Grassmann and quantum oscillator algebra representation %J Annales de l’Institut Henri Poincaré D %D 2014 %P 1-46 %V 1 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/1/ %R 10.4171/aihpd/1 %G en %F AIHPD_2014__1_1_1_0
Caracciolo, Sergio; Sportiello, Andrea. Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type identities II. Grassmann and quantum oscillator algebra representation. Annales de l’Institut Henri Poincaré D, Tome 1 (2014) no. 1, pp. 1-46. doi: 10.4171/aihpd/1
Cité par Sources :