The Pohozaev-Schoen identity on asymptotically Euclidean manifolds: Conservation laws and their applications
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1703-1724

Voir la notice de l'article provenant de la source Numdam

The aim of this paper is to present a version of the generalized Pohozaev-Schoen identity in the context of asymptotically Euclidean manifolds. Since these kind of geometric identities have proven to be a very powerful tool when analysing different geometric problems for compact manifolds, we will present a variety of applications within this new context. Among these applications, we will show some rigidity results for asymptotically Euclidean Ricci-solitons and Codazzi-solitons. Also, we will present an almost-Schur type inequality valid in this non-compact setting which does not need restrictions on the Ricci curvature. Finally, we will show how some rigidity results related with static potentials also follow from these type of conservation principles.

DOI : 10.1016/j.anihpc.2021.01.002
Classification : 53C21, 53C24
Keywords: Pohozaev-Schoen identity, Asymptotically Euclidean manifolds, Generalized solitons, Almost-Schur lemma, Static metrics

Avalos, R. 1 ; Freitas, A. 2

1 a Departamento de Matemática, Universidade Federal do Ceará, R. Humberto Monte, 60455-760, Fortaleza, CE, Brazil
2 b Departamento de Matemática, Universidade Federal da Paraíba, 58059-900, João Pessoa, Paraíba, Brazil
@article{AIHPC_2021__38_6_1703_0,
     author = {Avalos, R. and Freitas, A.},
     title = {The {Pohozaev-Schoen} identity on asymptotically {Euclidean} manifolds: {Conservation} laws and their applications},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1703--1724},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2021},
     doi = {10.1016/j.anihpc.2021.01.002},
     mrnumber = {4327894},
     zbl = {1483.53058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2021.01.002/}
}
TY  - JOUR
AU  - Avalos, R.
AU  - Freitas, A.
TI  - The Pohozaev-Schoen identity on asymptotically Euclidean manifolds: Conservation laws and their applications
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1703
EP  - 1724
VL  - 38
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2021.01.002/
DO  - 10.1016/j.anihpc.2021.01.002
LA  - en
ID  - AIHPC_2021__38_6_1703_0
ER  - 
%0 Journal Article
%A Avalos, R.
%A Freitas, A.
%T The Pohozaev-Schoen identity on asymptotically Euclidean manifolds: Conservation laws and their applications
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1703-1724
%V 38
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2021.01.002/
%R 10.1016/j.anihpc.2021.01.002
%G en
%F AIHPC_2021__38_6_1703_0
Avalos, R.; Freitas, A. The Pohozaev-Schoen identity on asymptotically Euclidean manifolds: Conservation laws and their applications. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1703-1724. doi: 10.1016/j.anihpc.2021.01.002

Cité par Sources :