On critical points of the relative fractional perimeter
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1407-1428
Voir la notice de l'article provenant de la source Numdam
We study the localization of sets with constant nonlocal mean curvature and prescribed small volume in a bounded open set, proving that they are sufficiently close to critical points of a suitable nonlocal potential. We then consider the fractional perimeter in half-spaces. We prove existence of minimizers under fixed volume constraint, and we show some properties such as smoothness and rotational symmetry.
Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.005
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.005
Keywords:
Fractional mean curvature, Isoperimetric sets, Perturbative variational theory
Affiliations des auteurs :
Malchiodi, Andrea 1 ; Novaga, Matteo 2 ; Pagliardini, Dayana 1
@article{AIHPC_2021__38_5_1407_0, author = {Malchiodi, Andrea and Novaga, Matteo and Pagliardini, Dayana}, title = {On critical points of the relative fractional perimeter}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1407--1428}, publisher = {Elsevier}, volume = {38}, number = {5}, year = {2021}, doi = {10.1016/j.anihpc.2020.11.005}, mrnumber = {4300927}, zbl = {1475.49053}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/} }
TY - JOUR AU - Malchiodi, Andrea AU - Novaga, Matteo AU - Pagliardini, Dayana TI - On critical points of the relative fractional perimeter JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1407 EP - 1428 VL - 38 IS - 5 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/ DO - 10.1016/j.anihpc.2020.11.005 LA - en ID - AIHPC_2021__38_5_1407_0 ER -
%0 Journal Article %A Malchiodi, Andrea %A Novaga, Matteo %A Pagliardini, Dayana %T On critical points of the relative fractional perimeter %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1407-1428 %V 38 %N 5 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/ %R 10.1016/j.anihpc.2020.11.005 %G en %F AIHPC_2021__38_5_1407_0
Malchiodi, Andrea; Novaga, Matteo; Pagliardini, Dayana. On critical points of the relative fractional perimeter. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1407-1428. doi: 10.1016/j.anihpc.2020.11.005
Cité par Sources :