On critical points of the relative fractional perimeter
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1407-1428

Voir la notice de l'article provenant de la source Numdam

We study the localization of sets with constant nonlocal mean curvature and prescribed small volume in a bounded open set, proving that they are sufficiently close to critical points of a suitable nonlocal potential. We then consider the fractional perimeter in half-spaces. We prove existence of minimizers under fixed volume constraint, and we show some properties such as smoothness and rotational symmetry.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.005
Keywords: Fractional mean curvature, Isoperimetric sets, Perturbative variational theory

Malchiodi, Andrea 1 ; Novaga, Matteo 2 ; Pagliardini, Dayana 1

1 a Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
2 b Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56217 Pisa, Italy
@article{AIHPC_2021__38_5_1407_0,
     author = {Malchiodi, Andrea and Novaga, Matteo and Pagliardini, Dayana},
     title = {On critical points of the relative fractional perimeter},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1407--1428},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.005},
     mrnumber = {4300927},
     zbl = {1475.49053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/}
}
TY  - JOUR
AU  - Malchiodi, Andrea
AU  - Novaga, Matteo
AU  - Pagliardini, Dayana
TI  - On critical points of the relative fractional perimeter
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1407
EP  - 1428
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/
DO  - 10.1016/j.anihpc.2020.11.005
LA  - en
ID  - AIHPC_2021__38_5_1407_0
ER  - 
%0 Journal Article
%A Malchiodi, Andrea
%A Novaga, Matteo
%A Pagliardini, Dayana
%T On critical points of the relative fractional perimeter
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1407-1428
%V 38
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.11.005/
%R 10.1016/j.anihpc.2020.11.005
%G en
%F AIHPC_2021__38_5_1407_0
Malchiodi, Andrea; Novaga, Matteo; Pagliardini, Dayana. On critical points of the relative fractional perimeter. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1407-1428. doi: 10.1016/j.anihpc.2020.11.005

Cité par Sources :