Point interactions for 3D sub-Laplacians
Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1095-1113

Voir la notice de l'article provenant de la source Numdam

In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold M, no point interaction centered at a point q0M exists. When M is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on C0(M{q0}) is essentially self-adjoint in L2(M). A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold N, whose associated Laplace-Beltrami operator acting on C0(N{q0}) is never essentially self-adjoint in L2(N), if dimN3. We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.10.007
Keywords: Essential self-adjointness, Heisenberg group, Sub-Laplacian, Point interactions, Sub-Riemannian geometry, Rotation of molecules

Adami, Riccardo 1 ; Boscain, Ugo 2 ; Franceschi, Valentina 3 ; Prandi, Dario 4

1 a Politecnico di Torino, Dipartimento di Scienze Matematiche “G.L. Lagrange”, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
2 b CNRS, Sorbonne Université, Inria, Université de Paris, Laboratoire Jacques-Louis Lions, Paris, France
3 c Dipartimento di Matematica Tullio Levi-Civita, Università degli Studi di Padova, via Trieste 63, 35131 Padova, Italy
4 d Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, 91190, Gif-sur-Yvette, France
@article{AIHPC_2021__38_4_1095_0,
     author = {Adami, Riccardo and Boscain, Ugo and Franceschi, Valentina and Prandi, Dario},
     title = {Point interactions for {3D} {sub-Laplacians}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1095--1113},
     publisher = {Elsevier},
     volume = {38},
     number = {4},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.10.007},
     mrnumber = {4266236},
     zbl = {1468.35181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.10.007/}
}
TY  - JOUR
AU  - Adami, Riccardo
AU  - Boscain, Ugo
AU  - Franceschi, Valentina
AU  - Prandi, Dario
TI  - Point interactions for 3D sub-Laplacians
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1095
EP  - 1113
VL  - 38
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.10.007/
DO  - 10.1016/j.anihpc.2020.10.007
LA  - en
ID  - AIHPC_2021__38_4_1095_0
ER  - 
%0 Journal Article
%A Adami, Riccardo
%A Boscain, Ugo
%A Franceschi, Valentina
%A Prandi, Dario
%T Point interactions for 3D sub-Laplacians
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1095-1113
%V 38
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.10.007/
%R 10.1016/j.anihpc.2020.10.007
%G en
%F AIHPC_2021__38_4_1095_0
Adami, Riccardo; Boscain, Ugo; Franceschi, Valentina; Prandi, Dario. Point interactions for 3D sub-Laplacians. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1095-1113. doi: 10.1016/j.anihpc.2020.10.007

Cité par Sources :