Semilinear problems with right-hand sides singular at u = 0  = 0 which change sign
Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 877-909

Voir la notice de l'article provenant de la source Numdam

The present paper is devoted to the study of the existence of a solution u for a quasilinear second order differential equation with homogeneous Dirichlet conditions, where the right-hand side tends to infinity at u=0. The problem has been considered by several authors since the 70's. Mainly, nonnegative right-hand sides were considered and thus only nonnegative solutions were possible. Here we consider the case where the right-hand side can change sign but is non negative (finite or infinite) at u=0, while no restriction on its growth at u=0 is assumed on its positive part. We show that there exists a nonnegative solution in a sense introduced in the paper; moreover, this solution is stable with respect to the right-hand side and is unique if the right-hand side is nonincreasing in u. We also show that if the right-hand side goes to infinity at zero faster than 1/|u|, then only nonnegative solutions are possible. We finally prove by means of the study of a one-dimensional example that nonnegative solutions and even many solutions which change sign can exist if the growth of the right-hand side is 1/|u|γ with 0<γ<1.

DOI : 10.1016/j.anihpc.2020.09.001
Classification : 35J25
Keywords: Singular equations, Monotone operators, Existence, Uniqueness, Positive and nonpositive solutions

Casado-Díaz, Juan 1 ; Murat, François 2

1 a Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain
2 b Laboratoire Jacques-Louis Lions, Sorbonne Université & CNRS, France
@article{AIHPC_2021__38_3_877_0,
     author = {Casado-D{\'\i}az, Juan and Murat, Fran\c{c}ois},
     title = {Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {877--909},
     publisher = {Elsevier},
     volume = {38},
     number = {3},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.09.001},
     mrnumber = {4227055},
     zbl = {1466.35111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.001/}
}
TY  - JOUR
AU  - Casado-Díaz, Juan
AU  - Murat, François
TI  - Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 877
EP  - 909
VL  - 38
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.001/
DO  - 10.1016/j.anihpc.2020.09.001
LA  - en
ID  - AIHPC_2021__38_3_877_0
ER  - 
%0 Journal Article
%A Casado-Díaz, Juan
%A Murat, François
%T Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 877-909
%V 38
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.09.001/
%R 10.1016/j.anihpc.2020.09.001
%G en
%F AIHPC_2021__38_3_877_0
Casado-Díaz, Juan; Murat, François. Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 877-909. doi: 10.1016/j.anihpc.2020.09.001

Cité par Sources :