A dynamical approach to semilinear elliptic equations
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 421-450

Voir la notice de l'article provenant de la source Numdam

A characterization of a semilinear elliptic partial differential equation (PDE) on a bounded domain in Rn is given in terms of an infinite-dimensional dynamical system. The dynamical system is on the space of boundary data for the PDE. This is a novel approach to elliptic problems that enables the use of dynamical systems tools in studying the corresponding PDE. The dynamical system is ill-posed, meaning solutions do not exist forwards or backwards in time for generic initial data. We offer a framework in which this ill-posed system can be analyzed. This can be viewed as generalizing the theory of spatial dynamics, which applies to the case of an infinite cylindrical domain.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.08.001
Classification : 35J67, 35A24, 34D09, 35J25
Keywords: Semilinear equations, Spatial dynamics, Dynamical systems

Beck, Margaret 1 ; Cox, Graham 2 ; Jones, Christopher 3 ; Latushkin, Yuri 4 ; Sukhtayev, Alim 5

1 a Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
2 b Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
3 c Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
4 d Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
5 e Department of Mathematics, Miami University, Oxford, OH 45056, USA
@article{AIHPC_2021__38_2_421_0,
     author = {Beck, Margaret and Cox, Graham and Jones, Christopher and Latushkin, Yuri and Sukhtayev, Alim},
     title = {A dynamical approach to semilinear elliptic equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {421--450},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.08.001},
     mrnumber = {4211992},
     zbl = {1459.35174},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.08.001/}
}
TY  - JOUR
AU  - Beck, Margaret
AU  - Cox, Graham
AU  - Jones, Christopher
AU  - Latushkin, Yuri
AU  - Sukhtayev, Alim
TI  - A dynamical approach to semilinear elliptic equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 421
EP  - 450
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.08.001/
DO  - 10.1016/j.anihpc.2020.08.001
LA  - en
ID  - AIHPC_2021__38_2_421_0
ER  - 
%0 Journal Article
%A Beck, Margaret
%A Cox, Graham
%A Jones, Christopher
%A Latushkin, Yuri
%A Sukhtayev, Alim
%T A dynamical approach to semilinear elliptic equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 421-450
%V 38
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.08.001/
%R 10.1016/j.anihpc.2020.08.001
%G en
%F AIHPC_2021__38_2_421_0
Beck, Margaret; Cox, Graham; Jones, Christopher; Latushkin, Yuri; Sukhtayev, Alim. A dynamical approach to semilinear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 421-450. doi: 10.1016/j.anihpc.2020.08.001

Cité par Sources :