Relaxed Euler systems and convergence to Navier-Stokes equations
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 369-401

Voir la notice de l'article provenant de la source Numdam

We consider the approximation of Navier-Stokes equations for a Newtonian fluid by Euler type systems with relaxation both in compressible and incompressible cases. This requires to decompose the second-order derivative terms of the velocity into first-order ones. Usual decompositions lead to approximate systems with tensor variables. We construct approximate systems with vector variables by using Hurwitz-Radon matrices. These systems are written in the form of balance laws and admit strictly convex entropies, so that they are symmetrizable hyperbolic. For smooth solutions, we prove the convergence of the approximate systems to the Navier-Stokes equations in uniform time intervals. Global-in-time convergence is also shown for the initial data near constant equilibrium states of the systems. These convergence results are established not only for the approximate systems with vector variables but also for those with tensor variables.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.07.007
Classification : 35L45, 35L60, 35L65, 35Q30, 35Q31
Keywords: Compressible and incompressible Navier-Stokes equations, Newtonian fluid, Relaxed Euler systems, Local and global convergence

Peng, Yue-Jun 1

1 Université Clermont Auvergne, CNRS, Laboratoire de Mathématiques Blaise Pascal, 63000 Clermont-Ferrand, France
@article{AIHPC_2021__38_2_369_0,
     author = {Peng, Yue-Jun},
     title = {Relaxed {Euler} systems and convergence to {Navier-Stokes} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {369--401},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.07.007},
     mrnumber = {4211990},
     zbl = {1458.35319},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.07.007/}
}
TY  - JOUR
AU  - Peng, Yue-Jun
TI  - Relaxed Euler systems and convergence to Navier-Stokes equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 369
EP  - 401
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.07.007/
DO  - 10.1016/j.anihpc.2020.07.007
LA  - en
ID  - AIHPC_2021__38_2_369_0
ER  - 
%0 Journal Article
%A Peng, Yue-Jun
%T Relaxed Euler systems and convergence to Navier-Stokes equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 369-401
%V 38
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.07.007/
%R 10.1016/j.anihpc.2020.07.007
%G en
%F AIHPC_2021__38_2_369_0
Peng, Yue-Jun. Relaxed Euler systems and convergence to Navier-Stokes equations. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 369-401. doi: 10.1016/j.anihpc.2020.07.007

Cité par Sources :