Bifurcation for minimal surface equation in hyperbolic 3-manifolds
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 243-279

Voir la notice de l'article provenant de la source Numdam

Initiated by the work of Uhlenbeck in late 1970s, we study existence, multiplicity and asymptotic behavior for minimal immersions of a closed surface in some hyperbolic three-manifold, with prescribed conformal structure on the surface and second fundamental form of the immersion. We prove several results in these directions, by analyzing the Gauss equation governing the immersion. We determine when existence holds, and obtain unique stable solutions for area minimizing immersions. Furthermore, we find exactly when other (unstable) solutions exist and study how they blow-up. We prove our class of unstable solutions exhibit different blow-up behaviors when the surface is of genus two or greater. We establish similar results for the blow-up behavior of any general family of unstable solutions. This information allows us to consider similar minimal immersion problems when the total extrinsic curvature is also prescribed.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.07.001
Classification : 53C21, 35J20, 53A10
Keywords: Minimal immersions, Hyperbolic three-manifolds, Moser-Trudinger functional, Blow-up analysis

Huang, Zheng 1, 2 ; Lucia, Marcello 2 ; Tarantello, Gabriella 3

1 a The Graduate Center, The City University of New York, 365 Fifth Ave., New York, NY 10016, USA
2 b Department of Mathematics, The City University of New York, Staten Island, NY 10314, USA
3 c Dipartimento di Matematica, Universita' di Roma “Tor Vergata”, Via della Ricerca Scientifica, I-00133 Roma, Italy
@article{AIHPC_2021__38_2_243_0,
     author = {Huang, Zheng and Lucia, Marcello and Tarantello, Gabriella},
     title = {Bifurcation for minimal surface equation in hyperbolic 3-manifolds},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {243--279},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.07.001},
     mrnumber = {4211986},
     zbl = {1465.53074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.07.001/}
}
TY  - JOUR
AU  - Huang, Zheng
AU  - Lucia, Marcello
AU  - Tarantello, Gabriella
TI  - Bifurcation for minimal surface equation in hyperbolic 3-manifolds
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 243
EP  - 279
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.07.001/
DO  - 10.1016/j.anihpc.2020.07.001
LA  - en
ID  - AIHPC_2021__38_2_243_0
ER  - 
%0 Journal Article
%A Huang, Zheng
%A Lucia, Marcello
%A Tarantello, Gabriella
%T Bifurcation for minimal surface equation in hyperbolic 3-manifolds
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 243-279
%V 38
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.07.001/
%R 10.1016/j.anihpc.2020.07.001
%G en
%F AIHPC_2021__38_2_243_0
Huang, Zheng; Lucia, Marcello; Tarantello, Gabriella. Bifurcation for minimal surface equation in hyperbolic 3-manifolds. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 243-279. doi: 10.1016/j.anihpc.2020.07.001

Cité par Sources :