The Euler equations in a critical case of the generalized Campanato space
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 201-241

Voir la notice de l'article provenant de la source Numdam

In this paper we prove local in time well-posedness for the incompressible Euler equations in Rn for the initial data in L1(1)1(Rn), which corresponds to a critical case of the generalized Campanato spaces Lq(N)s(Rn). The space is studied extensively in our companion paper [9], and in the critical case we have embeddings B,11(Rn)L1(1)1(Rn)C0,1(Rn), where B,11(Rn) and C0,1(Rn) are the Besov space and the Lipschitz space respectively. In particular L1(1)1(Rn) contains non-C1(Rn) functions as well as linearly growing functions at spatial infinity. We can also construct a class of simple initial velocity belonging to L1(1)1(Rn), for which the solution to the Euler equations blows up in finite time.

DOI : 10.1016/j.anihpc.2020.06.006
Classification : 35Q31, 76B03, 76D03
Keywords: Euler equation, Generalized Campanato space, Local well-posedness

Chae, Dongho 1, 2 ; Wolf, Jörg 1

1 a Department of Mathematics, Chung-Ang University, Dongjak-gu Heukseok-ro 84, Seoul 06974, Republic of Korea
2 b School of Mathematics, Korea Institute for Advanced Study, Dongdaemun-gu Hoegi-ro 85, Seoul 02455, Republic of Korea
@article{AIHPC_2021__38_2_201_0,
     author = {Chae, Dongho and Wolf, J\"org},
     title = {The {Euler} equations in a critical case of the generalized {Campanato} space},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {201--241},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.06.006},
     mrnumber = {4211985},
     zbl = {1458.35308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.06.006/}
}
TY  - JOUR
AU  - Chae, Dongho
AU  - Wolf, Jörg
TI  - The Euler equations in a critical case of the generalized Campanato space
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 201
EP  - 241
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.06.006/
DO  - 10.1016/j.anihpc.2020.06.006
LA  - en
ID  - AIHPC_2021__38_2_201_0
ER  - 
%0 Journal Article
%A Chae, Dongho
%A Wolf, Jörg
%T The Euler equations in a critical case of the generalized Campanato space
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 201-241
%V 38
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.06.006/
%R 10.1016/j.anihpc.2020.06.006
%G en
%F AIHPC_2021__38_2_201_0
Chae, Dongho; Wolf, Jörg. The Euler equations in a critical case of the generalized Campanato space. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 201-241. doi: 10.1016/j.anihpc.2020.06.006

Cité par Sources :