Voir la notice de l'article provenant de la source Numdam
In this paper we prove local in time well-posedness for the incompressible Euler equations in for the initial data in , which corresponds to a critical case of the generalized Campanato spaces . The space is studied extensively in our companion paper [9], and in the critical case we have embeddings , where and are the Besov space and the Lipschitz space respectively. In particular contains non- functions as well as linearly growing functions at spatial infinity. We can also construct a class of simple initial velocity belonging to , for which the solution to the Euler equations blows up in finite time.
Keywords: Euler equation, Generalized Campanato space, Local well-posedness
Chae, Dongho 1, 2 ; Wolf, Jörg 1
@article{AIHPC_2021__38_2_201_0, author = {Chae, Dongho and Wolf, J\"org}, title = {The {Euler} equations in a critical case of the generalized {Campanato} space}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {201--241}, publisher = {Elsevier}, volume = {38}, number = {2}, year = {2021}, doi = {10.1016/j.anihpc.2020.06.006}, mrnumber = {4211985}, zbl = {1458.35308}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.06.006/} }
TY - JOUR AU - Chae, Dongho AU - Wolf, Jörg TI - The Euler equations in a critical case of the generalized Campanato space JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 201 EP - 241 VL - 38 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.06.006/ DO - 10.1016/j.anihpc.2020.06.006 LA - en ID - AIHPC_2021__38_2_201_0 ER -
%0 Journal Article %A Chae, Dongho %A Wolf, Jörg %T The Euler equations in a critical case of the generalized Campanato space %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 201-241 %V 38 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.06.006/ %R 10.1016/j.anihpc.2020.06.006 %G en %F AIHPC_2021__38_2_201_0
Chae, Dongho; Wolf, Jörg. The Euler equations in a critical case of the generalized Campanato space. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 201-241. doi: 10.1016/j.anihpc.2020.06.006
Cité par Sources :