Relaxed multi-marginal costs and quantization effects
Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 61-90

Voir la notice de l'article provenant de la source Numdam

We propose a duality theory for multi-marginal repulsive cost that appears in optimal transport problems arising in Density Functional Theory. The related optimization problems involve probabilities on the entire space and, as minimizing sequences may lose mass at infinity, it is natural to expect relaxed solutions which are sub-probabilities. We first characterize the N-marginals relaxed cost in terms of a stratification formula which takes into account all k interactions with kN. We then develop a duality framework involving continuous functions vanishing at infinity and deduce primal-dual necessary and sufficient optimality conditions. Next we prove the existence and the regularity of an optimal dual potential under very mild assumptions. In the last part of the paper, we apply our results to a minimization problem involving a given continuous potential and we give evidence of a mass quantization effect for optimal solutions.

DOI : 10.1016/j.anihpc.2020.06.004
Classification : 49J45, 49N15, 49K30, 35Q40
Keywords: Multi-marginal optimal transport, Duality and Relaxation, Coulomb cost, Quantization of minimizers

Bouchitté, Guy 1 ; Buttazzo, Giuseppe 2 ; Champion, Thierry 1 ; De Pascale, Luigi 3

1 a Laboratoire IMATH, Université de Toulon, BP 20132, 83957 La Garde Cedex, France
2 b Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy
3 c Dipartimento di Matematica e Informatica, Università di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italy
@article{AIHPC_2021__38_1_61_0,
     author = {Bouchitt\'e, Guy and Buttazzo, Giuseppe and Champion, Thierry and De Pascale, Luigi},
     title = {Relaxed multi-marginal costs and quantization effects},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {61--90},
     publisher = {Elsevier},
     volume = {38},
     number = {1},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.06.004},
     mrnumber = {4200477},
     zbl = {1461.49046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.06.004/}
}
TY  - JOUR
AU  - Bouchitté, Guy
AU  - Buttazzo, Giuseppe
AU  - Champion, Thierry
AU  - De Pascale, Luigi
TI  - Relaxed multi-marginal costs and quantization effects
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 61
EP  - 90
VL  - 38
IS  - 1
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.06.004/
DO  - 10.1016/j.anihpc.2020.06.004
LA  - en
ID  - AIHPC_2021__38_1_61_0
ER  - 
%0 Journal Article
%A Bouchitté, Guy
%A Buttazzo, Giuseppe
%A Champion, Thierry
%A De Pascale, Luigi
%T Relaxed multi-marginal costs and quantization effects
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 61-90
%V 38
%N 1
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.06.004/
%R 10.1016/j.anihpc.2020.06.004
%G en
%F AIHPC_2021__38_1_61_0
Bouchitté, Guy; Buttazzo, Giuseppe; Champion, Thierry; De Pascale, Luigi. Relaxed multi-marginal costs and quantization effects. Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 61-90. doi: 10.1016/j.anihpc.2020.06.004

Cité par Sources :