Fractional Piola identity and polyconvexity in fractional spaces
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 955-981

Voir la notice de l'article provenant de la source Numdam

In this paper we address nonlocal vector variational principles obtained by substitution of the classical gradient by the Riesz fractional gradient. We show the existence of minimizers in Bessel fractional spaces under the main assumption of polyconvexity of the energy density, and, as a consequence, the existence of solutions to the associated Euler–Lagrange system of nonlinear fractional PDE. The main ingredient is the fractional Piola identity, which establishes that the fractional divergence of the cofactor matrix of the fractional gradient vanishes. This identity implies the weak convergence of the determinant of the fractional gradient, and, in turn, the existence of minimizers of the nonlocal energy. Contrary to local problems in nonlinear elasticity, this existence result is compatible with solutions presenting discontinuities at points and along hypersurfaces.

DOI : 10.1016/j.anihpc.2020.02.006
Classification : 35Q74, 35R11, 49J45
Keywords: Nonlocal variational problems, Riesz fractional gradient, Fractional Piola identity, Polyconvexity

Bellido, José C. 1 ; Cueto, Javier 1 ; Mora-Corral, Carlos 2

1 E.T.S.I. Industriales, Department of Mathematics and INEI, Universidad de Castilla-La Mancha, 13.071-Ciudad Real, Spain
2 Department of Mathematics, Universidad Autónoma de Madrid, Cantoblanco, 28.049-Madrid, Spain
@article{AIHPC_2020__37_4_955_0,
     author = {Bellido, Jos\'e C. and Cueto, Javier and Mora-Corral, Carlos},
     title = {Fractional {Piola} identity and polyconvexity in fractional spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {955--981},
     publisher = {Elsevier},
     volume = {37},
     number = {4},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.02.006},
     mrnumber = {4104831},
     zbl = {1442.35445},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.02.006/}
}
TY  - JOUR
AU  - Bellido, José C.
AU  - Cueto, Javier
AU  - Mora-Corral, Carlos
TI  - Fractional Piola identity and polyconvexity in fractional spaces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 955
EP  - 981
VL  - 37
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.02.006/
DO  - 10.1016/j.anihpc.2020.02.006
LA  - en
ID  - AIHPC_2020__37_4_955_0
ER  - 
%0 Journal Article
%A Bellido, José C.
%A Cueto, Javier
%A Mora-Corral, Carlos
%T Fractional Piola identity and polyconvexity in fractional spaces
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 955-981
%V 37
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.02.006/
%R 10.1016/j.anihpc.2020.02.006
%G en
%F AIHPC_2020__37_4_955_0
Bellido, José C.; Cueto, Javier; Mora-Corral, Carlos. Fractional Piola identity and polyconvexity in fractional spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 955-981. doi: 10.1016/j.anihpc.2020.02.006

Cité par Sources :