Voir la notice de l'article provenant de la source Numdam
This paper deals with collisionless transport equations in bounded open domains with boundary ∂Ω, orthogonally invariant velocity measure with support and stochastic partly diffuse boundary operators relating the outgoing and incoming fluxes. Under very general conditions, such equations are governed by stochastic -semigroups on . We give a general criterion of irreducibility of and we show that, under very natural assumptions, if an invariant density exists then converges strongly (not simply in Cesarò means) to its ergodic projection. We show also that if no invariant density exists then is sweeping in the sense that, for any density φ, the total mass of concentrates near suitable sets of zero measure as . We show also a general weak compactness theorem of interest for the existence of invariant densities. This theorem is based on several results on smoothness and transversality of the dynamical flow associated to .
Keywords: Kinetic equation, Stochastic semigroup, Convergence to equilibrium
Lods, B. 1 ; Mokhtar-Kharroubi, M. 2 ; Rudnicki, R. 3
@article{AIHPC_2020__37_4_877_0,
author = {Lods, B. and Mokhtar-Kharroubi, M. and Rudnicki, R.},
title = {Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {877--923},
publisher = {Elsevier},
volume = {37},
number = {4},
year = {2020},
doi = {10.1016/j.anihpc.2020.02.004},
mrnumber = {4104829},
zbl = {1439.82037},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.02.004/}
}
TY - JOUR AU - Lods, B. AU - Mokhtar-Kharroubi, M. AU - Rudnicki, R. TI - Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 877 EP - 923 VL - 37 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.02.004/ DO - 10.1016/j.anihpc.2020.02.004 LA - en ID - AIHPC_2020__37_4_877_0 ER -
%0 Journal Article %A Lods, B. %A Mokhtar-Kharroubi, M. %A Rudnicki, R. %T Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 877-923 %V 37 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.02.004/ %R 10.1016/j.anihpc.2020.02.004 %G en %F AIHPC_2020__37_4_877_0
Lods, B.; Mokhtar-Kharroubi, M.; Rudnicki, R. Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 877-923. doi: 10.1016/j.anihpc.2020.02.004
Cité par Sources :