Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 877-923

Voir la notice de l'article provenant de la source Numdam

This paper deals with collisionless transport equations in bounded open domains ΩRd (d2) with C1 boundary ∂Ω, orthogonally invariant velocity measure m(dv) with support VRd and stochastic partly diffuse boundary operators H relating the outgoing and incoming fluxes. Under very general conditions, such equations are governed by stochastic C0-semigroups (UH(t))t0 on L1(Ω×V,dxm(dv)). We give a general criterion of irreducibility of (UH(t))t0 and we show that, under very natural assumptions, if an invariant density exists then (UH(t))t0 converges strongly (not simply in Cesarò means) to its ergodic projection. We show also that if no invariant density exists then (UH(t))t0 is sweeping in the sense that, for any density φ, the total mass of UH(t)φ concentrates near suitable sets of zero measure as t+. We show also a general weak compactness theorem of interest for the existence of invariant densities. This theorem is based on several results on smoothness and transversality of the dynamical flow associated to (UH(t))t0.

DOI : 10.1016/j.anihpc.2020.02.004
Classification : 82C40, 35F15, 47D06
Keywords: Kinetic equation, Stochastic semigroup, Convergence to equilibrium

Lods, B. 1 ; Mokhtar-Kharroubi, M. 2 ; Rudnicki, R. 3

1 Università degli Studi di Torino & Collegio Carlo Alberto, Department of Economics and Statistics, Corso Unione Sovietica, 218/bis, 10134 Torino, Italy
2 Université de Bourgogne Franche-Comté, Laboratoire de Mathématiques, CNRS UMR 6623, 16, route de Gray, 25030 Besançon Cedex, France
3 Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland
@article{AIHPC_2020__37_4_877_0,
     author = {Lods, B. and Mokhtar-Kharroubi, M. and Rudnicki, R.},
     title = {Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {877--923},
     publisher = {Elsevier},
     volume = {37},
     number = {4},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.02.004},
     mrnumber = {4104829},
     zbl = {1439.82037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.02.004/}
}
TY  - JOUR
AU  - Lods, B.
AU  - Mokhtar-Kharroubi, M.
AU  - Rudnicki, R.
TI  - Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 877
EP  - 923
VL  - 37
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.02.004/
DO  - 10.1016/j.anihpc.2020.02.004
LA  - en
ID  - AIHPC_2020__37_4_877_0
ER  - 
%0 Journal Article
%A Lods, B.
%A Mokhtar-Kharroubi, M.
%A Rudnicki, R.
%T Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 877-923
%V 37
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.02.004/
%R 10.1016/j.anihpc.2020.02.004
%G en
%F AIHPC_2020__37_4_877_0
Lods, B.; Mokhtar-Kharroubi, M.; Rudnicki, R. Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 877-923. doi: 10.1016/j.anihpc.2020.02.004

Cité par Sources :