Unique continuation principles in cones under nonzero Neumann boundary conditions
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 785-815

Voir la notice de l'article provenant de la source Numdam

We consider an elliptic equation in a cone, endowed with (possibly inhomogeneous) Neumann conditions. The operator and the forcing terms can also allow non-Lipschitz singularities at the vertex of the cone.

In this setting, we provide unique continuation results, both in terms of interior and boundary points.

The proof relies on a suitable Almgren-type frequency formula with remainders. As a byproduct, we obtain classification results for blow-up limits.

DOI : 10.1016/j.anihpc.2020.01.005
Classification : 35J15, 35J25, 35J75
Keywords: Unique continuation, Singular weights, Conical geometry, Blow-up limits, Almgren's frequency formula

Dipierro, Serena 1 ; Felli, Veronica 2 ; Valdinoci, Enrico 1

1 Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
2 Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy
@article{AIHPC_2020__37_4_785_0,
     author = {Dipierro, Serena and Felli, Veronica and Valdinoci, Enrico},
     title = {Unique continuation principles in cones under nonzero {Neumann} boundary conditions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {785--815},
     publisher = {Elsevier},
     volume = {37},
     number = {4},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.01.005},
     mrnumber = {4104826},
     zbl = {1479.35287},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.01.005/}
}
TY  - JOUR
AU  - Dipierro, Serena
AU  - Felli, Veronica
AU  - Valdinoci, Enrico
TI  - Unique continuation principles in cones under nonzero Neumann boundary conditions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 785
EP  - 815
VL  - 37
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.01.005/
DO  - 10.1016/j.anihpc.2020.01.005
LA  - en
ID  - AIHPC_2020__37_4_785_0
ER  - 
%0 Journal Article
%A Dipierro, Serena
%A Felli, Veronica
%A Valdinoci, Enrico
%T Unique continuation principles in cones under nonzero Neumann boundary conditions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 785-815
%V 37
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.01.005/
%R 10.1016/j.anihpc.2020.01.005
%G en
%F AIHPC_2020__37_4_785_0
Dipierro, Serena; Felli, Veronica; Valdinoci, Enrico. Unique continuation principles in cones under nonzero Neumann boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 785-815. doi: 10.1016/j.anihpc.2020.01.005

Cité par Sources :