Voir la notice de l'article provenant de la source Numdam
We consider an elliptic equation in a cone, endowed with (possibly inhomogeneous) Neumann conditions. The operator and the forcing terms can also allow non-Lipschitz singularities at the vertex of the cone.
In this setting, we provide unique continuation results, both in terms of interior and boundary points.
The proof relies on a suitable Almgren-type frequency formula with remainders. As a byproduct, we obtain classification results for blow-up limits.
Keywords: Unique continuation, Singular weights, Conical geometry, Blow-up limits, Almgren's frequency formula
Dipierro, Serena 1 ; Felli, Veronica 2 ; Valdinoci, Enrico 1
@article{AIHPC_2020__37_4_785_0, author = {Dipierro, Serena and Felli, Veronica and Valdinoci, Enrico}, title = {Unique continuation principles in cones under nonzero {Neumann} boundary conditions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {785--815}, publisher = {Elsevier}, volume = {37}, number = {4}, year = {2020}, doi = {10.1016/j.anihpc.2020.01.005}, mrnumber = {4104826}, zbl = {1479.35287}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.01.005/} }
TY - JOUR AU - Dipierro, Serena AU - Felli, Veronica AU - Valdinoci, Enrico TI - Unique continuation principles in cones under nonzero Neumann boundary conditions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 785 EP - 815 VL - 37 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.01.005/ DO - 10.1016/j.anihpc.2020.01.005 LA - en ID - AIHPC_2020__37_4_785_0 ER -
%0 Journal Article %A Dipierro, Serena %A Felli, Veronica %A Valdinoci, Enrico %T Unique continuation principles in cones under nonzero Neumann boundary conditions %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 785-815 %V 37 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.01.005/ %R 10.1016/j.anihpc.2020.01.005 %G en %F AIHPC_2020__37_4_785_0
Dipierro, Serena; Felli, Veronica; Valdinoci, Enrico. Unique continuation principles in cones under nonzero Neumann boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 785-815. doi: 10.1016/j.anihpc.2020.01.005
Cité par Sources :