Voir la notice de l'article provenant de la source Numdam
The problem of obtaining necessary and sufficient conditions for local existence of non-negative solutions in Lebesgue spaces for semilinear heat equations having monotonically increasing source term f has only recently been resolved (Laister et al. (2016)). There, for the more difficult case of initial data in , a necessary and sufficient integral condition on f emerged. Here, subject to this integral condition, we consider other fundamental properties of solutions with initial data of indefinite sign, namely: uniqueness, regularity, continuous dependence and comparison. We also establish sufficient conditions for the global-in-time continuation of solutions for small initial data in .
Laister, R. 1 ; Sierżęga, M. 2
@article{AIHPC_2020__37_3_709_0,
author = {Laister, R. and Sier\.z\k{e}ga, M.},
title = {Well-posedness of semilinear heat equations in {\protect\emph{L}
} \protect\textsuperscript{1}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {709--725},
publisher = {Elsevier},
volume = {37},
number = {3},
year = {2020},
doi = {10.1016/j.anihpc.2019.12.001},
zbl = {1442.35220},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.001/}
}
TY - JOUR
AU - Laister, R.
AU - Sierżęga, M.
TI - Well-posedness of semilinear heat equations in L
1
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2020
SP - 709
EP - 725
VL - 37
IS - 3
PB - Elsevier
UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.001/
DO - 10.1016/j.anihpc.2019.12.001
LA - en
ID - AIHPC_2020__37_3_709_0
ER -
%0 Journal Article
%A Laister, R.
%A Sierżęga, M.
%T Well-posedness of semilinear heat equations in L
1
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 709-725
%V 37
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.001/
%R 10.1016/j.anihpc.2019.12.001
%G en
%F AIHPC_2020__37_3_709_0
Laister, R.; Sierżęga, M. Well-posedness of semilinear heat equations in L
1. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 709-725. doi: 10.1016/j.anihpc.2019.12.001
Cité par Sources :