Well-posedness of semilinear heat equations in L 1
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 709-725

Voir la notice de l'article provenant de la source Numdam

The problem of obtaining necessary and sufficient conditions for local existence of non-negative solutions in Lebesgue spaces for semilinear heat equations having monotonically increasing source term f has only recently been resolved (Laister et al. (2016)). There, for the more difficult case of initial data in L1, a necessary and sufficient integral condition on f emerged. Here, subject to this integral condition, we consider other fundamental properties of solutions with L1 initial data of indefinite sign, namely: uniqueness, regularity, continuous dependence and comparison. We also establish sufficient conditions for the global-in-time continuation of solutions for small initial data in L1.

DOI : 10.1016/j.anihpc.2019.12.001
Keywords: Heat equation, Existence, Uniqueness, Continuous dependence, Comparison, Global solution

Laister, R. 1 ; Sierżęga, M. 2

1 Department of Engineering Design and Mathematics, University of the West of England, Bristol BS16 1QY, UK
2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
@article{AIHPC_2020__37_3_709_0,
     author = {Laister, R. and Sier\.z\k{e}ga, M.},
     title = {Well-posedness of semilinear heat equations in {\protect\emph{L}
}         \protect\textsuperscript{1}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {709--725},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.12.001},
     zbl = {1442.35220},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.001/}
}
TY  - JOUR
AU  - Laister, R.
AU  - Sierżęga, M.
TI  - Well-posedness of semilinear heat equations in L
         1
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 709
EP  - 725
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.001/
DO  - 10.1016/j.anihpc.2019.12.001
LA  - en
ID  - AIHPC_2020__37_3_709_0
ER  - 
%0 Journal Article
%A Laister, R.
%A Sierżęga, M.
%T Well-posedness of semilinear heat equations in L
         1
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 709-725
%V 37
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.001/
%R 10.1016/j.anihpc.2019.12.001
%G en
%F AIHPC_2020__37_3_709_0
Laister, R.; Sierżęga, M. Well-posedness of semilinear heat equations in L
         1. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 709-725. doi: 10.1016/j.anihpc.2019.12.001

Cité par Sources :