Voir la notice de l'article provenant de la source Numdam
In the last years measure-valued solutions started to be considered as a relevant notion of solutions if they satisfy the so-called measure-valued – strong uniqueness principle. This means that they coincide with a strong solution emanating from the same initial data if this strong solution exists. This property has been examined for many systems of mathematical physics, including incompressible and compressible Euler system, compressible Navier-Stokes system et al. and there are also some results concerning general hyperbolic systems. Our goal is to provide a unified framework for general systems, that would cover the most interesting cases of systems, and most importantly, we give examples of equations, for which the aspect of measure-valued – strong uniqueness has not been considered before, like incompressible magnetohydrodynamics and shallow water magnetohydrodynamics.
Gwiazda, Piotr 1 ; Kreml, Ondřej 2 ; Świerczewska-Gwiazda, Agnieszka 3
@article{AIHPC_2020__37_3_683_0, author = {Gwiazda, Piotr and Kreml, Ond\v{r}ej and \'Swierczewska-Gwiazda, Agnieszka}, title = {Dissipative measure-valued solutions for general conservation laws}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {683--707}, publisher = {Elsevier}, volume = {37}, number = {3}, year = {2020}, doi = {10.1016/j.anihpc.2019.11.001}, mrnumber = {4093617}, zbl = {1447.35209}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.11.001/} }
TY - JOUR AU - Gwiazda, Piotr AU - Kreml, Ondřej AU - Świerczewska-Gwiazda, Agnieszka TI - Dissipative measure-valued solutions for general conservation laws JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 683 EP - 707 VL - 37 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.11.001/ DO - 10.1016/j.anihpc.2019.11.001 LA - en ID - AIHPC_2020__37_3_683_0 ER -
%0 Journal Article %A Gwiazda, Piotr %A Kreml, Ondřej %A Świerczewska-Gwiazda, Agnieszka %T Dissipative measure-valued solutions for general conservation laws %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 683-707 %V 37 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.11.001/ %R 10.1016/j.anihpc.2019.11.001 %G en %F AIHPC_2020__37_3_683_0
Gwiazda, Piotr; Kreml, Ondřej; Świerczewska-Gwiazda, Agnieszka. Dissipative measure-valued solutions for general conservation laws. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 683-707. doi: 10.1016/j.anihpc.2019.11.001
Cité par Sources :