Dissipative measure-valued solutions for general conservation laws
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 683-707

Voir la notice de l'article provenant de la source Numdam

In the last years measure-valued solutions started to be considered as a relevant notion of solutions if they satisfy the so-called measure-valued – strong uniqueness principle. This means that they coincide with a strong solution emanating from the same initial data if this strong solution exists. This property has been examined for many systems of mathematical physics, including incompressible and compressible Euler system, compressible Navier-Stokes system et al. and there are also some results concerning general hyperbolic systems. Our goal is to provide a unified framework for general systems, that would cover the most interesting cases of systems, and most importantly, we give examples of equations, for which the aspect of measure-valued – strong uniqueness has not been considered before, like incompressible magnetohydrodynamics and shallow water magnetohydrodynamics.

DOI : 10.1016/j.anihpc.2019.11.001
Keywords: Young measures, Measure-valued solutions, Hyperbolic systems

Gwiazda, Piotr 1 ; Kreml, Ondřej 2 ; Świerczewska-Gwiazda, Agnieszka 3

1 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa, Poland
2 Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, CZ-115 67 Praha 1, Czech Republic
3 Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
@article{AIHPC_2020__37_3_683_0,
     author = {Gwiazda, Piotr and Kreml, Ond\v{r}ej and \'Swierczewska-Gwiazda, Agnieszka},
     title = {Dissipative measure-valued solutions for general conservation laws},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {683--707},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.11.001},
     mrnumber = {4093617},
     zbl = {1447.35209},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.11.001/}
}
TY  - JOUR
AU  - Gwiazda, Piotr
AU  - Kreml, Ondřej
AU  - Świerczewska-Gwiazda, Agnieszka
TI  - Dissipative measure-valued solutions for general conservation laws
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 683
EP  - 707
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.11.001/
DO  - 10.1016/j.anihpc.2019.11.001
LA  - en
ID  - AIHPC_2020__37_3_683_0
ER  - 
%0 Journal Article
%A Gwiazda, Piotr
%A Kreml, Ondřej
%A Świerczewska-Gwiazda, Agnieszka
%T Dissipative measure-valued solutions for general conservation laws
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 683-707
%V 37
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.11.001/
%R 10.1016/j.anihpc.2019.11.001
%G en
%F AIHPC_2020__37_3_683_0
Gwiazda, Piotr; Kreml, Ondřej; Świerczewska-Gwiazda, Agnieszka. Dissipative measure-valued solutions for general conservation laws. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 683-707. doi: 10.1016/j.anihpc.2019.11.001

Cité par Sources :