Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 653-661

Voir la notice de l'article provenant de la source Numdam

Given a Banach space E with a supremum-type norm induced by a collection of operators, we prove that E is a dual space and provide an atomic decomposition of its predual. We apply this result, and some results obtained previously by one of the authors, to the function space B introduced recently by Bourgain, Brezis, and Mironescu. This yields an atomic decomposition of the predual B, the biduality result that B0=B and B=B, and a formula for the distance from an element fB to B0.

DOI : 10.1016/j.anihpc.2020.01.004
Keywords: Dual and predual, Bourgain-Brezis-Mironescu space, Atomic decomposition

D'Onofrio, Luigi 1 ; Greco, Luigi 2 ; Perfekt, Karl-Mikael 3 ; Sbordone, Carlo 4 ; Schiattarella, Roberta 4

1 Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli “Parthenope”, Centro Direzionale Isola C4, 80100 Napoli, Italy
2 Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli “Federico II”, Via Claudio 21, 80125 Napoli, Italy
3 Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, United Kingdom
4 Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Napoli, Italy
@article{AIHPC_2020__37_3_653_0,
     author = {D'Onofrio, Luigi and Greco, Luigi and Perfekt, Karl-Mikael and Sbordone, Carlo and Schiattarella, Roberta},
     title = {Atomic decompositions, two stars theorems, and distances for the {Bourgain{\textendash}Brezis{\textendash}Mironescu} space and other big spaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {653--661},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.01.004},
     mrnumber = {4093624},
     zbl = {1443.46005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.01.004/}
}
TY  - JOUR
AU  - D'Onofrio, Luigi
AU  - Greco, Luigi
AU  - Perfekt, Karl-Mikael
AU  - Sbordone, Carlo
AU  - Schiattarella, Roberta
TI  - Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 653
EP  - 661
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.01.004/
DO  - 10.1016/j.anihpc.2020.01.004
LA  - en
ID  - AIHPC_2020__37_3_653_0
ER  - 
%0 Journal Article
%A D'Onofrio, Luigi
%A Greco, Luigi
%A Perfekt, Karl-Mikael
%A Sbordone, Carlo
%A Schiattarella, Roberta
%T Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 653-661
%V 37
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2020.01.004/
%R 10.1016/j.anihpc.2020.01.004
%G en
%F AIHPC_2020__37_3_653_0
D'Onofrio, Luigi; Greco, Luigi; Perfekt, Karl-Mikael; Sbordone, Carlo; Schiattarella, Roberta. Atomic decompositions, two stars theorems, and distances for the Bourgain–Brezis–Mironescu space and other big spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 653-661. doi: 10.1016/j.anihpc.2020.01.004

Cité par Sources :