Voir la notice de l'article provenant de la source Numdam
In the Vlasov-Poisson equation, every configuration which is homogeneous in space provides a stationary solution. Penrose gave in 1960 a criterion for such a configuration to be linearly unstable. While this criterion makes sense in a measure-valued setting, the existing results concerning nonlinear instability always suppose some regularity with respect to the velocity variable. Here, thanks to a multiphasic reformulation of the problem, we can prove an “almost Lyapounov instability” result for the Vlasov-Poisson equation, and an ill-posedness result for the kinetic Euler equation and the Vlasov-Benney equation (two quasineutral limits of the Vlasov-Poisson equation), both around any unstable measure.
@article{AIHPC_2020__37_3_489_0,
author = {Baradat, Aymeric},
title = {Nonlinear instability in {Vlasov} type equations around rough velocity profiles},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {489--547},
publisher = {Elsevier},
volume = {37},
number = {3},
year = {2020},
doi = {10.1016/j.anihpc.2019.12.002},
mrnumber = {4093619},
zbl = {1441.35234},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.002/}
}
TY - JOUR AU - Baradat, Aymeric TI - Nonlinear instability in Vlasov type equations around rough velocity profiles JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 489 EP - 547 VL - 37 IS - 3 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.002/ DO - 10.1016/j.anihpc.2019.12.002 LA - en ID - AIHPC_2020__37_3_489_0 ER -
%0 Journal Article %A Baradat, Aymeric %T Nonlinear instability in Vlasov type equations around rough velocity profiles %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 489-547 %V 37 %N 3 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.002/ %R 10.1016/j.anihpc.2019.12.002 %G en %F AIHPC_2020__37_3_489_0
Baradat, Aymeric. Nonlinear instability in Vlasov type equations around rough velocity profiles. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 489-547. doi: 10.1016/j.anihpc.2019.12.002
Cité par Sources :