Nonlinear instability in Vlasov type equations around rough velocity profiles
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 489-547

Voir la notice de l'article provenant de la source Numdam

In the Vlasov-Poisson equation, every configuration which is homogeneous in space provides a stationary solution. Penrose gave in 1960 a criterion for such a configuration to be linearly unstable. While this criterion makes sense in a measure-valued setting, the existing results concerning nonlinear instability always suppose some regularity with respect to the velocity variable. Here, thanks to a multiphasic reformulation of the problem, we can prove an “almost Lyapounov instability” result for the Vlasov-Poisson equation, and an ill-posedness result for the kinetic Euler equation and the Vlasov-Benney equation (two quasineutral limits of the Vlasov-Poisson equation), both around any unstable measure.

DOI : 10.1016/j.anihpc.2019.12.002
Keywords: Vlasov–Poisson, Nonlinear instability, Penrose condition, Measure-valued solutions
@article{AIHPC_2020__37_3_489_0,
     author = {Baradat, Aymeric},
     title = {Nonlinear instability in {Vlasov} type equations around rough velocity profiles},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {489--547},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.12.002},
     mrnumber = {4093619},
     zbl = {1441.35234},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.002/}
}
TY  - JOUR
AU  - Baradat, Aymeric
TI  - Nonlinear instability in Vlasov type equations around rough velocity profiles
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 489
EP  - 547
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.002/
DO  - 10.1016/j.anihpc.2019.12.002
LA  - en
ID  - AIHPC_2020__37_3_489_0
ER  - 
%0 Journal Article
%A Baradat, Aymeric
%T Nonlinear instability in Vlasov type equations around rough velocity profiles
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 489-547
%V 37
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.12.002/
%R 10.1016/j.anihpc.2019.12.002
%G en
%F AIHPC_2020__37_3_489_0
Baradat, Aymeric. Nonlinear instability in Vlasov type equations around rough velocity profiles. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 489-547. doi: 10.1016/j.anihpc.2019.12.002

Cité par Sources :