Global classical solutions to quadratic systems with mass control in arbitrary dimensions
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 281-307

Voir la notice de l'article provenant de la source Numdam

The global existence of classical solutions to reaction-diffusion systems in arbitrary space dimensions is studied. The nonlinearities are assumed to be quasi-positive, to have (slightly super-) quadratic growth, and to possess a mass control, which includes the important cases of mass conservation and mass dissipation. Under these assumptions, the local classical solution is shown to be global, and in the case of mass conservation or mass dissipation, to have the L-norm growing at most polynomially in time. Applications include skew-symmetric Lotka-Volterra systems and quadratic reversible chemical reactions.

DOI : 10.1016/j.anihpc.2019.09.003
Classification : 35A01, 35K57, 35K58, 35Q92
Keywords: Reaction-diffusion systems, Classical solutions, Global existence, Slowly-growing a-priori estimates, Mass dissipation

Fellner, Klemens 1 ; Morgan, Jeff 2 ; Tang, Bao Quoc 1

1 Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria
2 Department of Mathematics, University of Houston, Houston, TX 77204, USA
@article{AIHPC_2020__37_2_281_0,
     author = {Fellner, Klemens and Morgan, Jeff and Tang, Bao Quoc},
     title = {Global classical solutions to quadratic systems with mass control in arbitrary dimensions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {281--307},
     publisher = {Elsevier},
     volume = {37},
     number = {2},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.09.003},
     mrnumber = {4072804},
     zbl = {1433.35167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.09.003/}
}
TY  - JOUR
AU  - Fellner, Klemens
AU  - Morgan, Jeff
AU  - Tang, Bao Quoc
TI  - Global classical solutions to quadratic systems with mass control in arbitrary dimensions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 281
EP  - 307
VL  - 37
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.09.003/
DO  - 10.1016/j.anihpc.2019.09.003
LA  - en
ID  - AIHPC_2020__37_2_281_0
ER  - 
%0 Journal Article
%A Fellner, Klemens
%A Morgan, Jeff
%A Tang, Bao Quoc
%T Global classical solutions to quadratic systems with mass control in arbitrary dimensions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 281-307
%V 37
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.09.003/
%R 10.1016/j.anihpc.2019.09.003
%G en
%F AIHPC_2020__37_2_281_0
Fellner, Klemens; Morgan, Jeff; Tang, Bao Quoc. Global classical solutions to quadratic systems with mass control in arbitrary dimensions. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 2, pp. 281-307. doi: 10.1016/j.anihpc.2019.09.003

Cité par Sources :