Voir la notice de l'article provenant de la source Numdam
Nonlinear heat equations in two dimensions with singular initial data are studied. In recent works nonlinearities with exponential growth of Trudinger-Moser type have been shown to manifest critical behavior: well-posedness in the subcritical case and non-existence for certain supercritical data. In this article we propose a specific model nonlinearity with Trudinger-Moser growth for which we obtain surprisingly complete results: a) for initial data strictly below a certain singular threshold function the problem is well-posed, b) for initial data above this threshold function , there exists no solution, c) for the singular initial datum there is non-uniqueness. The function is a weak stationary singular solution of the problem, and we show that there exists also a regularizing classical solution with the same initial datum .
Ioku, Norisuke 1 ; Ruf, Bernhard 2 ; Terraneo, Elide 2
@article{AIHPC_2019__36_7_2027_0, author = {Ioku, Norisuke and Ruf, Bernhard and Terraneo, Elide}, title = {Non-uniqueness for a critical heat equation in two dimensions with singular data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2027--2051}, publisher = {Elsevier}, volume = {36}, number = {7}, year = {2019}, doi = {10.1016/j.anihpc.2019.07.004}, mrnumber = {4020532}, zbl = {1427.35096}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.004/} }
TY - JOUR AU - Ioku, Norisuke AU - Ruf, Bernhard AU - Terraneo, Elide TI - Non-uniqueness for a critical heat equation in two dimensions with singular data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 2027 EP - 2051 VL - 36 IS - 7 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.004/ DO - 10.1016/j.anihpc.2019.07.004 LA - en ID - AIHPC_2019__36_7_2027_0 ER -
%0 Journal Article %A Ioku, Norisuke %A Ruf, Bernhard %A Terraneo, Elide %T Non-uniqueness for a critical heat equation in two dimensions with singular data %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 2027-2051 %V 36 %N 7 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.004/ %R 10.1016/j.anihpc.2019.07.004 %G en %F AIHPC_2019__36_7_2027_0
Ioku, Norisuke; Ruf, Bernhard; Terraneo, Elide. Non-uniqueness for a critical heat equation in two dimensions with singular data. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2027-2051. doi: 10.1016/j.anihpc.2019.07.004
Cité par Sources :