Non-uniqueness for a critical heat equation in two dimensions with singular data
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2027-2051

Voir la notice de l'article provenant de la source Numdam

Nonlinear heat equations in two dimensions with singular initial data are studied. In recent works nonlinearities with exponential growth of Trudinger-Moser type have been shown to manifest critical behavior: well-posedness in the subcritical case and non-existence for certain supercritical data. In this article we propose a specific model nonlinearity with Trudinger-Moser growth for which we obtain surprisingly complete results: a) for initial data strictly below a certain singular threshold function u˜ the problem is well-posed, b) for initial data above this threshold function u˜, there exists no solution, c) for the singular initial datum u˜ there is non-uniqueness. The function u˜ is a weak stationary singular solution of the problem, and we show that there exists also a regularizing classical solution with the same initial datum u˜.

DOI : 10.1016/j.anihpc.2019.07.004
Keywords: Nonlinear heat equation, Singular initial data, Non-uniqueness, Non-existence

Ioku, Norisuke 1 ; Ruf, Bernhard 2 ; Terraneo, Elide 2

1 Mathematical Institute, Tohoku University, Aramaki 6-3, Sendai 980-8578, Japan
2 Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, via C. Saldini 50, Milano 20133, Italy
@article{AIHPC_2019__36_7_2027_0,
     author = {Ioku, Norisuke and Ruf, Bernhard and Terraneo, Elide},
     title = {Non-uniqueness for a critical heat equation in two dimensions with singular data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {2027--2051},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.07.004},
     mrnumber = {4020532},
     zbl = {1427.35096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.004/}
}
TY  - JOUR
AU  - Ioku, Norisuke
AU  - Ruf, Bernhard
AU  - Terraneo, Elide
TI  - Non-uniqueness for a critical heat equation in two dimensions with singular data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 2027
EP  - 2051
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.004/
DO  - 10.1016/j.anihpc.2019.07.004
LA  - en
ID  - AIHPC_2019__36_7_2027_0
ER  - 
%0 Journal Article
%A Ioku, Norisuke
%A Ruf, Bernhard
%A Terraneo, Elide
%T Non-uniqueness for a critical heat equation in two dimensions with singular data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 2027-2051
%V 36
%N 7
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.004/
%R 10.1016/j.anihpc.2019.07.004
%G en
%F AIHPC_2019__36_7_2027_0
Ioku, Norisuke; Ruf, Bernhard; Terraneo, Elide. Non-uniqueness for a critical heat equation in two dimensions with singular data. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2027-2051. doi: 10.1016/j.anihpc.2019.07.004

Cité par Sources :