Voir la notice de l'article provenant de la source Numdam
In this paper we study polynomial Hamiltonian systems in the plane and their small perturbations: . The first nonzero Melnikov function of the Poincaré map along a loop γ of is given by an iterated integral [3]. In [7], we bounded the length of the iterated integral by a geometric number which we call orbit depth. We conjectured that the bound is optimal.
Here, we give a simple example of a Hamiltonian system F and its orbit γ having infinite orbit depth. If our conjecture is true, for this example there should exist deformations with arbitrary high length first nonzero Melnikov function along γ. We construct deformations whose first nonzero Melnikov function is of length three and explain the difficulties in constructing deformations having high length first nonzero Melnikov functions .
Keywords: Iterated integrals, Center problem
Mardešić, Pavao 1 ; Novikov, Dmitry 2 ; Ortiz-Bobadilla, Laura 3 ; Pontigo-Herrera, Jessie 2
@article{AIHPC_2019__36_7_1941_0, author = {Marde\v{s}i\'c, Pavao and Novikov, Dmitry and Ortiz-Bobadilla, Laura and Pontigo-Herrera, Jessie}, title = {Infinite orbit depth and length of {Melnikov} functions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1941--1957}, publisher = {Elsevier}, volume = {36}, number = {7}, year = {2019}, doi = {10.1016/j.anihpc.2019.07.003}, mrnumber = {4020529}, zbl = {1435.37086}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.003/} }
TY - JOUR AU - Mardešić, Pavao AU - Novikov, Dmitry AU - Ortiz-Bobadilla, Laura AU - Pontigo-Herrera, Jessie TI - Infinite orbit depth and length of Melnikov functions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1941 EP - 1957 VL - 36 IS - 7 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.003/ DO - 10.1016/j.anihpc.2019.07.003 LA - en ID - AIHPC_2019__36_7_1941_0 ER -
%0 Journal Article %A Mardešić, Pavao %A Novikov, Dmitry %A Ortiz-Bobadilla, Laura %A Pontigo-Herrera, Jessie %T Infinite orbit depth and length of Melnikov functions %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1941-1957 %V 36 %N 7 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.003/ %R 10.1016/j.anihpc.2019.07.003 %G en %F AIHPC_2019__36_7_1941_0
Mardešić, Pavao; Novikov, Dmitry; Ortiz-Bobadilla, Laura; Pontigo-Herrera, Jessie. Infinite orbit depth and length of Melnikov functions. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1941-1957. doi: 10.1016/j.anihpc.2019.07.003
Cité par Sources :