Infinite orbit depth and length of Melnikov functions
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1941-1957

Voir la notice de l'article provenant de la source Numdam

In this paper we study polynomial Hamiltonian systems dF=0 in the plane and their small perturbations: dF+ϵω=0. The first nonzero Melnikov function Mμ=Mμ(F,γ,ω) of the Poincaré map along a loop γ of dF=0 is given by an iterated integral [3]. In [7], we bounded the length of the iterated integral Mμ by a geometric number k=k(F,γ) which we call orbit depth. We conjectured that the bound is optimal.

Here, we give a simple example of a Hamiltonian system F and its orbit γ having infinite orbit depth. If our conjecture is true, for this example there should exist deformations dF+ϵω with arbitrary high length first nonzero Melnikov function Mμ along γ. We construct deformations dF+ϵω=0 whose first nonzero Melnikov function Mμ is of length three and explain the difficulties in constructing deformations having high length first nonzero Melnikov functions Mμ.

DOI : 10.1016/j.anihpc.2019.07.003
Classification : 34C07, 34C05, 34C08
Keywords: Iterated integrals, Center problem

Mardešić, Pavao 1 ; Novikov, Dmitry 2 ; Ortiz-Bobadilla, Laura 3 ; Pontigo-Herrera, Jessie 2

1 Université de Bourgogne, Institute de Mathématiques de Bourgogne - UMR 5584 CNRS, Université de Bourgogne-Franche-Comté, 9 avenue Alain Savary, BP 47870, 21078 Dijon, France
2 Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
3 Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM), Área de la Investigación Científica, Circuito exterior, Ciudad Universitaria, 04510, Ciudad de México, Mexico
@article{AIHPC_2019__36_7_1941_0,
     author = {Marde\v{s}i\'c, Pavao and Novikov, Dmitry and Ortiz-Bobadilla, Laura and Pontigo-Herrera, Jessie},
     title = {Infinite orbit depth and length of {Melnikov} functions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1941--1957},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.07.003},
     mrnumber = {4020529},
     zbl = {1435.37086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.003/}
}
TY  - JOUR
AU  - Mardešić, Pavao
AU  - Novikov, Dmitry
AU  - Ortiz-Bobadilla, Laura
AU  - Pontigo-Herrera, Jessie
TI  - Infinite orbit depth and length of Melnikov functions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1941
EP  - 1957
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.003/
DO  - 10.1016/j.anihpc.2019.07.003
LA  - en
ID  - AIHPC_2019__36_7_1941_0
ER  - 
%0 Journal Article
%A Mardešić, Pavao
%A Novikov, Dmitry
%A Ortiz-Bobadilla, Laura
%A Pontigo-Herrera, Jessie
%T Infinite orbit depth and length of Melnikov functions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1941-1957
%V 36
%N 7
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.07.003/
%R 10.1016/j.anihpc.2019.07.003
%G en
%F AIHPC_2019__36_7_1941_0
Mardešić, Pavao; Novikov, Dmitry; Ortiz-Bobadilla, Laura; Pontigo-Herrera, Jessie. Infinite orbit depth and length of Melnikov functions. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1941-1957. doi: 10.1016/j.anihpc.2019.07.003

Cité par Sources :