Taylor expansions of the value function associated with a bilinear optimal control problem
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1361-1399

Voir la notice de l'article provenant de la source Numdam

A general bilinear optimal control problem subject to an infinite-dimensional state equation is considered. Polynomial approximations of the associated value function are derived around the steady state by repeated formal differentiation of the Hamilton–Jacobi–Bellman equation. The terms of the approximations are described by multilinear forms, which can be obtained as solutions to generalized Lyapunov equations with recursively defined right-hand sides. They form the basis for defining a suboptimal feedback law. The approximation properties of this feedback law are investigated. An application to the optimal control of a Fokker–Planck equation is also provided.

DOI : 10.1016/j.anihpc.2019.01.001
Classification : 49J20, 49N35, 93D05, 93D15
Keywords: Value function, Hamilton–Jacobi–Bellman equation, Bilinear control systems, Riccati equation, Generalized Lyapunov equations, Fokker–Planck equation

Breiten, Tobias 1 ; Kunisch, Karl 1, 2 ; Pfeiffer, Laurent 1

1 Institute of Mathematics, University of Graz, Austria
2 RICAM Institute, Austrian Academy of Sciences, Linz, Austria
@article{AIHPC_2019__36_5_1361_0,
     author = {Breiten, Tobias and Kunisch, Karl and Pfeiffer, Laurent},
     title = {Taylor expansions of the value function associated with a bilinear optimal control problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1361--1399},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.01.001},
     mrnumber = {3985547},
     zbl = {1420.49005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.01.001/}
}
TY  - JOUR
AU  - Breiten, Tobias
AU  - Kunisch, Karl
AU  - Pfeiffer, Laurent
TI  - Taylor expansions of the value function associated with a bilinear optimal control problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1361
EP  - 1399
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.01.001/
DO  - 10.1016/j.anihpc.2019.01.001
LA  - en
ID  - AIHPC_2019__36_5_1361_0
ER  - 
%0 Journal Article
%A Breiten, Tobias
%A Kunisch, Karl
%A Pfeiffer, Laurent
%T Taylor expansions of the value function associated with a bilinear optimal control problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1361-1399
%V 36
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2019.01.001/
%R 10.1016/j.anihpc.2019.01.001
%G en
%F AIHPC_2019__36_5_1361_0
Breiten, Tobias; Kunisch, Karl; Pfeiffer, Laurent. Taylor expansions of the value function associated with a bilinear optimal control problem. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1361-1399. doi: 10.1016/j.anihpc.2019.01.001

Cité par Sources :