On the global Cauchy problem for the Hartree equation with rapidly decaying initial data
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 1081-1104

Voir la notice de l'article provenant de la source Numdam

This paper is concerned with the Cauchy problem for the Hartree equation on Rn,nN with the nonlinearity of type (||γ|u|2)u,0<γ<n. It is shown that a global solution with some twisted persistence property exists for data in the space LpL2,1p2 under some suitable conditions on γ and spatial dimension nN. It is also shown that the global solution u has a smoothing effect in terms of spatial integrability in the sense that the map tu(t) is well defined and continuous from R{0} to Lp, which is well known for the solution to the corresponding linear Schrödinger equation. Local and global well-posedness results for hat Lp-spaces are also presented. The local and global results are proved by combining arguments by Carles–Mouzaoui with a new functional framework introduced by Zhou. Furthermore, it is also shown that the global results can be improved via generalized dispersive estimates in the case of one space dimension.

DOI : 10.1016/j.anihpc.2018.11.004
Classification : 35Q55
Keywords: Nonlinear Schrödinger equations, Hartree equation, Cauchy problem, Global well-posedness, $ {L}^{p}$-Cauchy data, Rapidly decaying data
@article{AIHPC_2019__36_4_1081_0,
     author = {Hyakuna, Ryosuke},
     title = {On the global {Cauchy} problem for the {Hartree} equation with rapidly decaying initial data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1081--1104},
     publisher = {Elsevier},
     volume = {36},
     number = {4},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.11.004},
     zbl = {1421.35337},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.11.004/}
}
TY  - JOUR
AU  - Hyakuna, Ryosuke
TI  - On the global Cauchy problem for the Hartree equation with rapidly decaying initial data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1081
EP  - 1104
VL  - 36
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.11.004/
DO  - 10.1016/j.anihpc.2018.11.004
LA  - en
ID  - AIHPC_2019__36_4_1081_0
ER  - 
%0 Journal Article
%A Hyakuna, Ryosuke
%T On the global Cauchy problem for the Hartree equation with rapidly decaying initial data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1081-1104
%V 36
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.11.004/
%R 10.1016/j.anihpc.2018.11.004
%G en
%F AIHPC_2019__36_4_1081_0
Hyakuna, Ryosuke. On the global Cauchy problem for the Hartree equation with rapidly decaying initial data. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 1081-1104. doi: 10.1016/j.anihpc.2018.11.004

Cité par Sources :