Voir la notice de l'article provenant de la source Numdam
This paper is concerned with the Cauchy problem for the Hartree equation on with the nonlinearity of type . It is shown that a global solution with some twisted persistence property exists for data in the space under some suitable conditions on γ and spatial dimension . It is also shown that the global solution u has a smoothing effect in terms of spatial integrability in the sense that the map is well defined and continuous from to , which is well known for the solution to the corresponding linear Schrödinger equation. Local and global well-posedness results for hat -spaces are also presented. The local and global results are proved by combining arguments by Carles–Mouzaoui with a new functional framework introduced by Zhou. Furthermore, it is also shown that the global results can be improved via generalized dispersive estimates in the case of one space dimension.
Keywords: Nonlinear Schrödinger equations, Hartree equation, Cauchy problem, Global well-posedness, $ {L}^{p}$-Cauchy data, Rapidly decaying data
@article{AIHPC_2019__36_4_1081_0, author = {Hyakuna, Ryosuke}, title = {On the global {Cauchy} problem for the {Hartree} equation with rapidly decaying initial data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1081--1104}, publisher = {Elsevier}, volume = {36}, number = {4}, year = {2019}, doi = {10.1016/j.anihpc.2018.11.004}, zbl = {1421.35337}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.11.004/} }
TY - JOUR AU - Hyakuna, Ryosuke TI - On the global Cauchy problem for the Hartree equation with rapidly decaying initial data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1081 EP - 1104 VL - 36 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.11.004/ DO - 10.1016/j.anihpc.2018.11.004 LA - en ID - AIHPC_2019__36_4_1081_0 ER -
%0 Journal Article %A Hyakuna, Ryosuke %T On the global Cauchy problem for the Hartree equation with rapidly decaying initial data %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1081-1104 %V 36 %N 4 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.11.004/ %R 10.1016/j.anihpc.2018.11.004 %G en %F AIHPC_2019__36_4_1081_0
Hyakuna, Ryosuke. On the global Cauchy problem for the Hartree equation with rapidly decaying initial data. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 1081-1104. doi: 10.1016/j.anihpc.2018.11.004
Cité par Sources :