Γ -convergence of free-discontinuity problems
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 1035-1079

Voir la notice de l'article provenant de la source Numdam

We study the Γ-convergence of sequences of free-discontinuity functionals depending on vector-valued functions u which can be discontinuous across hypersurfaces whose shape and location are not known a priori. The main novelty of our result is that we work under very general assumptions on the integrands which, in particular, are not required to be periodic in the space variable. Further, we consider the case of surface integrands which are not bounded from below by the amplitude of the jump of u.

We obtain three main results: compactness with respect to Γ-convergence, representation of the Γ-limit in an integral form and identification of its integrands, and homogenisation formulas without periodicity assumptions. In particular, the classical case of periodic homogenisation follows as a by-product of our analysis. Moreover, our result covers also the case of stochastic homogenisation, as we will show in a forthcoming paper.

DOI : 10.1016/j.anihpc.2018.11.003
Classification : 49J45, 49Q20, 74Q05
Keywords: Free-discontinuity problems, Γ-convergence, Homogenisation

Cagnetti, Filippo 1 ; Dal Maso, Gianni 2 ; Scardia, Lucia 3 ; Zeppieri, Caterina Ida 4

1 Department of Mathematics, University of Sussex, Brighton, United Kingdom
2 SISSA, Trieste, Italy
3 Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom
4 Institut für numerische und angewandte Mathematik, WWU Münster, Germany
@article{AIHPC_2019__36_4_1035_0,
     author = {Cagnetti, Filippo and Dal Maso, Gianni and Scardia, Lucia and Zeppieri, Caterina Ida},
     title = {$\Gamma$-convergence of free-discontinuity problems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1035--1079},
     publisher = {Elsevier},
     volume = {36},
     number = {4},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.11.003},
     mrnumber = {3955110},
     zbl = {1417.49010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.11.003/}
}
TY  - JOUR
AU  - Cagnetti, Filippo
AU  - Dal Maso, Gianni
AU  - Scardia, Lucia
AU  - Zeppieri, Caterina Ida
TI  - $\Gamma$-convergence of free-discontinuity problems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1035
EP  - 1079
VL  - 36
IS  - 4
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.11.003/
DO  - 10.1016/j.anihpc.2018.11.003
LA  - en
ID  - AIHPC_2019__36_4_1035_0
ER  - 
%0 Journal Article
%A Cagnetti, Filippo
%A Dal Maso, Gianni
%A Scardia, Lucia
%A Zeppieri, Caterina Ida
%T $\Gamma$-convergence of free-discontinuity problems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1035-1079
%V 36
%N 4
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.11.003/
%R 10.1016/j.anihpc.2018.11.003
%G en
%F AIHPC_2019__36_4_1035_0
Cagnetti, Filippo; Dal Maso, Gianni; Scardia, Lucia; Zeppieri, Caterina Ida. $\Gamma$-convergence of free-discontinuity problems. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 1035-1079. doi: 10.1016/j.anihpc.2018.11.003

Cité par Sources :