The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 811-836

Voir la notice de l'article provenant de la source Numdam

This work is devoted to the analysis of the quantum drift-diffusion model derived by Degond et al. in [7]. The model is obtained as the diffusive limit of the quantum Liouville–BGK equation, where the collision term is defined after a local quantum statistical equilibrium. The corner stone of the model is the closure relation between the density and the current, which is nonlinear and nonlocal, and is the main source of the mathematical difficulties. The question of the existence of solutions has been open since the derivation of the model, and we provide here a first result in a one-dimensional periodic setting. The proof is based on an approximation argument, and exploits some properties of the minimizers of an appropriate quantum free energy. We investigate as well the long time behavior, and show that the solutions converge exponentially fast to the equilibrium. This is done by deriving a non-commutative logarithmic Sobolev inequality for the local quantum statistical equilibrium.

DOI : 10.1016/j.anihpc.2018.10.002
Keywords: Quantum drift diffusion, Existence theory, Convergence to the equilibrium, Non-commutative logarithmic Sobolev inequalities, Density operator, Quantum free energy minimization
@article{AIHPC_2019__36_3_811_0,
     author = {Pinaud, Olivier},
     title = {The quantum drift-diffusion model: {Existence} and exponential convergence to the equilibrium},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {811--836},
     publisher = {Elsevier},
     volume = {36},
     number = {3},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.10.002},
     zbl = {1412.82022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.10.002/}
}
TY  - JOUR
AU  - Pinaud, Olivier
TI  - The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 811
EP  - 836
VL  - 36
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.10.002/
DO  - 10.1016/j.anihpc.2018.10.002
LA  - en
ID  - AIHPC_2019__36_3_811_0
ER  - 
%0 Journal Article
%A Pinaud, Olivier
%T The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 811-836
%V 36
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.10.002/
%R 10.1016/j.anihpc.2018.10.002
%G en
%F AIHPC_2019__36_3_811_0
Pinaud, Olivier. The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 811-836. doi: 10.1016/j.anihpc.2018.10.002

Cité par Sources :