Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 655-703

Voir la notice de l'article provenant de la source Numdam

In this paper, we consider the asymptotic behavior of the fractional mean curvature when s0+. Moreover, we deal with the behavior of s-minimal surfaces when the fractional parameter s(0,1) is small, in a bounded and connected open set with C2 boundary ΩRn. We classify the behavior of s-minimal surfaces with respect to the fixed exterior data (i.e. the s-minimal set fixed outside of Ω). So, for s small and depending on the data at infinity, the s-minimal set can be either empty in Ω, fill all Ω, or possibly develop a wildly oscillating boundary.

Also, we prove the continuity of the fractional mean curvature in all variables, for s[0,1]. Using this, we see that as the parameter s varies, the fractional mean curvature may change sign.

DOI : 10.1016/j.anihpc.2018.08.003
Classification : 49Q05, 35R11, 58E12
Keywords: Nonlocal minimal surfaces, Stickiness phenomena, Loss of regularity, Strongly nonlocal regime

Bucur, Claudia 1 ; Lombardini, Luca 2, 3, 4 ; Valdinoci, Enrico 2, 4, 5

1 School of Mathematics and Statistics, The University of Melbourne, 813 Swanston Street, Parkville, VIC 3010, Australia
2 Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milano, Italy
3 Faculté des Sciences, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens CEDEX 1, France
4 Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
5 Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, Via Ferrata 1, 27100 Pavia, Italy
@article{AIHPC_2019__36_3_655_0,
     author = {Bucur, Claudia and Lombardini, Luca and Valdinoci, Enrico},
     title = {Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {655--703},
     publisher = {Elsevier},
     volume = {36},
     number = {3},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.08.003},
     mrnumber = {3926519},
     zbl = {1411.49026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.08.003/}
}
TY  - JOUR
AU  - Bucur, Claudia
AU  - Lombardini, Luca
AU  - Valdinoci, Enrico
TI  - Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 655
EP  - 703
VL  - 36
IS  - 3
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.08.003/
DO  - 10.1016/j.anihpc.2018.08.003
LA  - en
ID  - AIHPC_2019__36_3_655_0
ER  - 
%0 Journal Article
%A Bucur, Claudia
%A Lombardini, Luca
%A Valdinoci, Enrico
%T Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 655-703
%V 36
%N 3
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.08.003/
%R 10.1016/j.anihpc.2018.08.003
%G en
%F AIHPC_2019__36_3_655_0
Bucur, Claudia; Lombardini, Luca; Valdinoci, Enrico. Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 655-703. doi: 10.1016/j.anihpc.2018.08.003

Cité par Sources :