Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 365-387

Voir la notice de l'article provenant de la source Numdam

For a sequence of coupled fields {(ϕn,ψn)} from a compact Riemann surface M with smooth boundary to a general compact Riemannian manifold with uniformly bounded energy and satisfying the Dirac-harmonic system up to some uniformly controlled error terms, we show that the energy identity holds during a blow-up process near the boundary. As an application to the heat flow of Dirac-harmonic maps from surfaces with boundary, when such a flow blows up at infinite time, we obtain an energy identity.

DOI : 10.1016/j.anihpc.2018.05.006
Classification : 53C43, 58E20
Keywords: Dirac-harmonic maps, Approximate Dirac-harmonic maps, Dirac-harmonic map flow, Energy identity, Boundary blow-up
@article{AIHPC_2019__36_2_365_0,
     author = {Jost, J\"urgen and Liu, Lei and Zhu, Miaomiao},
     title = {Energy identity for a class of approximate {Dirac-harmonic} maps from surfaces with boundary},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {365--387},
     publisher = {Elsevier},
     volume = {36},
     number = {2},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.05.006},
     mrnumber = {3913190},
     zbl = {1416.53060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.05.006/}
}
TY  - JOUR
AU  - Jost, Jürgen
AU  - Liu, Lei
AU  - Zhu, Miaomiao
TI  - Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 365
EP  - 387
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.05.006/
DO  - 10.1016/j.anihpc.2018.05.006
LA  - en
ID  - AIHPC_2019__36_2_365_0
ER  - 
%0 Journal Article
%A Jost, Jürgen
%A Liu, Lei
%A Zhu, Miaomiao
%T Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 365-387
%V 36
%N 2
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.05.006/
%R 10.1016/j.anihpc.2018.05.006
%G en
%F AIHPC_2019__36_2_365_0
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao. Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 365-387. doi: 10.1016/j.anihpc.2018.05.006

Cité par Sources :