Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 365-387
Voir la notice de l'article provenant de la source Numdam
For a sequence of coupled fields from a compact Riemann surface M with smooth boundary to a general compact Riemannian manifold with uniformly bounded energy and satisfying the Dirac-harmonic system up to some uniformly controlled error terms, we show that the energy identity holds during a blow-up process near the boundary. As an application to the heat flow of Dirac-harmonic maps from surfaces with boundary, when such a flow blows up at infinite time, we obtain an energy identity.
DOI :
10.1016/j.anihpc.2018.05.006
Classification :
53C43, 58E20
Keywords: Dirac-harmonic maps, Approximate Dirac-harmonic maps, Dirac-harmonic map flow, Energy identity, Boundary blow-up
Keywords: Dirac-harmonic maps, Approximate Dirac-harmonic maps, Dirac-harmonic map flow, Energy identity, Boundary blow-up
@article{AIHPC_2019__36_2_365_0, author = {Jost, J\"urgen and Liu, Lei and Zhu, Miaomiao}, title = {Energy identity for a class of approximate {Dirac-harmonic} maps from surfaces with boundary}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {365--387}, publisher = {Elsevier}, volume = {36}, number = {2}, year = {2019}, doi = {10.1016/j.anihpc.2018.05.006}, mrnumber = {3913190}, zbl = {1416.53060}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.05.006/} }
TY - JOUR AU - Jost, Jürgen AU - Liu, Lei AU - Zhu, Miaomiao TI - Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 365 EP - 387 VL - 36 IS - 2 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.05.006/ DO - 10.1016/j.anihpc.2018.05.006 LA - en ID - AIHPC_2019__36_2_365_0 ER -
%0 Journal Article %A Jost, Jürgen %A Liu, Lei %A Zhu, Miaomiao %T Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 365-387 %V 36 %N 2 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.05.006/ %R 10.1016/j.anihpc.2018.05.006 %G en %F AIHPC_2019__36_2_365_0
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao. Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 365-387. doi: 10.1016/j.anihpc.2018.05.006
Cité par Sources :