Estimating the division rate and kernel in the fragmentation equation
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1847-1884

Voir la notice de l'article provenant de la source Numdam

We consider the fragmentation equation

ft(t,x)=B(x)f(t,x)+y=xy=k(y,x)B(y)f(t,y)dy,
and address the question of estimating the fragmentation parameters – i.e. the division rate B(x) and the fragmentation kernel k(y,x) – from measurements of the size distribution f(t,) at various times. This is a natural question for any application where the sizes of the particles are measured experimentally whereas the fragmentation rates are unknown, see for instance Xue and Radford (2013) [26] for amyloid fibril breakage. Under the assumption of a polynomial division rate B(x)=αxγ and a self-similar fragmentation kernel k(y,x)=1yk0(xy), we use the asymptotic behavior proved in Escobedo et al. (2004) [11] to obtain uniqueness of the triplet (α,γ,k0) and a representation formula for k0. To invert this formula, one of the delicate points is to prove that the Mellin transform of the asymptotic profile never vanishes, what we do through the use of the Cauchy integral.

DOI : 10.1016/j.anihpc.2018.03.004
Classification : 35Q92, 35R06, 35R09, 45Q05, 46F12, 30D05
Keywords: Non-linear inverse problem, Size-structured partial differential equation, Fragmentation equation, Mellin transform, Functional equation
@article{AIHPC_2018__35_7_1847_0,
     author = {Doumic, Marie and Escobedo, Miguel and Tournus, Magali},
     title = {Estimating the division rate and kernel in the fragmentation equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1847--1884},
     publisher = {Elsevier},
     volume = {35},
     number = {7},
     year = {2018},
     doi = {10.1016/j.anihpc.2018.03.004},
     mrnumber = {3906858},
     zbl = {1406.35427},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.03.004/}
}
TY  - JOUR
AU  - Doumic, Marie
AU  - Escobedo, Miguel
AU  - Tournus, Magali
TI  - Estimating the division rate and kernel in the fragmentation equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1847
EP  - 1884
VL  - 35
IS  - 7
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.03.004/
DO  - 10.1016/j.anihpc.2018.03.004
LA  - en
ID  - AIHPC_2018__35_7_1847_0
ER  - 
%0 Journal Article
%A Doumic, Marie
%A Escobedo, Miguel
%A Tournus, Magali
%T Estimating the division rate and kernel in the fragmentation equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1847-1884
%V 35
%N 7
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.03.004/
%R 10.1016/j.anihpc.2018.03.004
%G en
%F AIHPC_2018__35_7_1847_0
Doumic, Marie; Escobedo, Miguel; Tournus, Magali. Estimating the division rate and kernel in the fragmentation equation. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1847-1884. doi: 10.1016/j.anihpc.2018.03.004

Cité par Sources :