Robust local Hölder rigidity of circle maps with breaks
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1827-1845
Voir la notice de l'article provenant de la source Numdam
We prove that, for every , every two -smooth circle diffeomorphisms with a break point, i.e. circle diffeomorphisms with a single singular point where the derivative has a jump discontinuity, with the same irrational rotation number and the same size of the break , are conjugate to each other via a conjugacy which is -Hölder continuous at the break points. An analogous result does not hold for circle diffeomorphisms even when they are analytic.
@article{AIHPC_2018__35_7_1827_0, author = {Khanin, Konstantin and Koci\'c, Sa\v{s}a}, title = {Robust local {H\"older} rigidity of circle maps with breaks}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1827--1845}, publisher = {Elsevier}, volume = {35}, number = {7}, year = {2018}, doi = {10.1016/j.anihpc.2018.03.003}, mrnumber = {3906857}, zbl = {1460.37040}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.03.003/} }
TY - JOUR AU - Khanin, Konstantin AU - Kocić, Saša TI - Robust local Hölder rigidity of circle maps with breaks JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1827 EP - 1845 VL - 35 IS - 7 PB - Elsevier UR - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.03.003/ DO - 10.1016/j.anihpc.2018.03.003 LA - en ID - AIHPC_2018__35_7_1827_0 ER -
%0 Journal Article %A Khanin, Konstantin %A Kocić, Saša %T Robust local Hölder rigidity of circle maps with breaks %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1827-1845 %V 35 %N 7 %I Elsevier %U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2018.03.003/ %R 10.1016/j.anihpc.2018.03.003 %G en %F AIHPC_2018__35_7_1827_0
Khanin, Konstantin; Kocić, Saša. Robust local Hölder rigidity of circle maps with breaks. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 7, pp. 1827-1845. doi: 10.1016/j.anihpc.2018.03.003
Cité par Sources :