Quantization of probability distributions and gradient flows in space dimension 2
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1531-1555

Voir la notice de l'article provenant de la source Numdam

In this paper we study a perturbative approach to the problem of quantization of probability distributions in the plane. Motivated by the fact that, as the number of points tends to infinity, hexagonal lattices are asymptotically optimal from an energetic point of view [10,12,15], we consider configurations that are small perturbations of the hexagonal lattice and we show that: (1) in the limit as the number of points tends to infinity, the hexagonal lattice is a strict minimizer of the energy; (2) the gradient flow of the limiting functional allows us to evolve any perturbed configuration to the optimal one exponentially fast. In particular, our analysis provides a new mathematical justification of the asymptotic optimality of the hexagonal lattice among its nearby configurations.

DOI : 10.1016/j.anihpc.2017.12.003
Classification : 35K40, 35Q94, 35B40, 35K92, 94A12
Keywords: Parabolic systems of PDEs, Gradient flow, Quantization of probability distributions, Wasserstein distance
@article{AIHPC_2018__35_6_1531_0,
     author = {Caglioti, Emanuele and Golse, Fran\c{c}ois and Iacobelli, Mikaela},
     title = {Quantization of probability distributions and gradient flows in space dimension 2},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1531--1555},
     publisher = {Elsevier},
     volume = {35},
     number = {6},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.12.003},
     mrnumber = {3846235},
     zbl = {1394.35219},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.12.003/}
}
TY  - JOUR
AU  - Caglioti, Emanuele
AU  - Golse, François
AU  - Iacobelli, Mikaela
TI  - Quantization of probability distributions and gradient flows in space dimension 2
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1531
EP  - 1555
VL  - 35
IS  - 6
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.12.003/
DO  - 10.1016/j.anihpc.2017.12.003
LA  - en
ID  - AIHPC_2018__35_6_1531_0
ER  - 
%0 Journal Article
%A Caglioti, Emanuele
%A Golse, François
%A Iacobelli, Mikaela
%T Quantization of probability distributions and gradient flows in space dimension 2
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1531-1555
%V 35
%N 6
%I Elsevier
%U http://geodesic.mathdoc.fr/articles/10.1016/j.anihpc.2017.12.003/
%R 10.1016/j.anihpc.2017.12.003
%G en
%F AIHPC_2018__35_6_1531_0
Caglioti, Emanuele; Golse, François; Iacobelli, Mikaela. Quantization of probability distributions and gradient flows in space dimension 2. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 6, pp. 1531-1555. doi: 10.1016/j.anihpc.2017.12.003

Cité par Sources :